The supermassive black holes (
This content will become publicly available on February 26, 2025
We present the first deep X-ray observations of luminous fast blue optical transient (LFBOT) AT 2018cow at ∼3.7 yr since discovery, together with the reanalysis of the observation at
- PAR ID:
- 10535657
- Publisher / Repository:
- ApJ
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 963
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract M BH∼ 106–1010M ⊙) that power luminous active galactic nuclei (AGNs), i.e., quasars, generally show a correlation between thermal disk emission in the ultraviolet (UV) and coronal emission in hard X-rays. In contrast, some “massive” black holes (mBHs;M BH∼ 105–106M ⊙) in low-mass galaxies present curious X-ray properties with coronal radiative output up to 100× weaker than expected. To examine this issue, we present a pilot study incorporating Very Large Array radio observations of a sample of 18 high-accretion-rate (Eddington ratiosL bol/L Edd> 0.1), mBH-powered AGNs (M BH∼ 106M ⊙) with Chandra X-ray coverage. Empirical correlations previously revealed in samples of radio-quiet, high-Eddington AGNs indicate that the radio–X-ray luminosity ratio,L R/L X, is approximately constant. Through multiwavelength analysis, we instead find that the X-ray-weaker mBHs in our sample tend toward larger values ofL R/L Xeven though they remain radio-quiet per their optical–UV properties. This trend results in a tentative but highly intriguing correlation betweenL R/L Xand X-ray weakness, which we argue is consistent with a scenario in which X-rays may be preferentially obscured from our line of sight by a “slim” accretion disk. We compare this observation to weak emission-line quasars (AGNs with exceptionally weak broad-line emission and a significant X-ray-weak fraction) and conclude by suggesting that our results may offer a new observational signature for finding high-accretion-rate AGNs. -
Abstract JWST has revealed a population of low-luminosity active galactic nuclei at
z > 4 in compact, red hosts (the “Little Red Dots,” or LRDs), which are largely undetected in X-rays. We investigate this phenomenon using General Relativistic Radiation Magnetohydrodynamics simulations of super-Eddington accretion onto a supermassive black hole (SMBH) withM •= 107M ⊙atz ∼ 6, representing the median population; the spectral energy distributions (SEDs) that we obtain are intrinsically X-ray weak. The highest levels of X-ray weakness occur in SMBHs accreting at mildly super-Eddington rates (1.4 <f Edd< 4) with zero spin, viewed at angles >30° from the pole. X-ray bolometric corrections in the observed 2–10 keV band reach ∼104atz = 6, ∼5 times higher than the highest constraint from X-ray stacking. Most SEDs are extraordinarily steep and soft in the X-rays (median photon index Γ = 3.1, mode of Γ = 4.4). SEDs strong in the X-rays have harder spectra with a high-energy bump when viewed near the hot (>108K) and highly relativistic jet, whereas X-ray weak SEDs lack this feature. Viewing an SMBH within 10° of its pole, where beaming enhances the X-ray emission, has a ∼1.5% probability, matching the LRD X-ray detection rate. Next-generation observatories like AXIS will detect X-ray-weak LRDs atz ∼ 6 from any viewing angle. Although many SMBHs in the LRDs are already estimated to accrete at super-Eddington rates, our model explains 50% of their population by requiring that their masses are overestimated by a mere factor of ∼3. In summary, we suggest that LRDs host slowly spinning SMBHs accreting at mildly super-Eddington rates, with large covering factors and broad emission lines enhanced by strong winds, providing a self-consistent explanation for their X-ray weakness and complementing other models. -
Abstract We present deep X-ray and radio observations of the fast blue optical transient (FBOT) AT 2020xnd/ZTF 20acigmel at z = 0.2433 from 13 days to 269 days after explosion. AT 2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT 2018cow. AT 2020xnd shows luminous radio emission reaching L ν ≈ 8 × 10 29 erg s −1 Hz −1 at 20 GHz and 75 days post-explosion, accompanied by luminous and rapidly fading soft X-ray emission peaking at L X ≈ 6 × 10 42 erg s −1 . Interpreting the radio emission in the context of synchrotron radiation from the explosion’s shock interaction with the environment, we find that AT 2020xnd launched a high-velocity outflow ( v ∼ 0.1 c –0.2 c ) propagating into a dense circumstellar medium (effective M ̇ ≈ 10 − 3 M ⊙ yr −1 for an assumed wind velocity of v w = 1000 km s −1 ). Similar to AT 2018cow, the detected X-ray emission is in excess compared to the extrapolated synchrotron spectrum and constitutes a different emission component, possibly powered by accretion onto a newly formed black hole or neutron star. These properties make AT 2020xnd a high-redshift analog to AT 2018cow, and establish AT 2020xnd as the fourth member of the class of optically luminous FBOTs with luminous multiwavelength counterparts.more » « less
-
AT2023fhn (the Finch): a luminous fast blue optical transient at a large offset from its host galaxy
ABSTRACT Luminous fast blue optical transients (LFBOTs) – the prototypical example being AT 2018cow – are a rare class of events whose origins are poorly understood. They are characterized by rapid evolution, featureless blue spectra at early times, and luminous X-ray and radio emission. LFBOTs thus far have been found exclusively at small projected offsets from star-forming host galaxies. We present Hubble Space Telescope, Gemini, Chandra, and Very Large Array observations of a new LFBOT, AT 2023fhn. The Hubble Space Telescope data reveal a large offset (>3.5 half-light radii) from the two closest galaxies, both at redshift z ∼ 0.24. The location of AT 2023fhn is in stark contrast with previous events, and demonstrates that LFBOTs can occur in a range of galactic environments.
-
Abstract Recent advances in numerical simulations of magnetically arrested accretion onto supermassive black holes have shed light on the formation and dynamics of magnetospheric current sheets near the black hole horizon. By considering the pair magnetization
σ e in the upstream region and the mass accretion rateṁ (in units of the Eddington mass accretion rate) as free parameters we estimate the strength of the magnetic field and develop analytical models, motivated by recent three-dimensional particle-in-cell simulations, to describe the populations of relativistic electrons and positrons (pairs) in the reconnection region.Applying our model to M87*, we numerically compute the non-thermal photon spectra for various values ofσ e . We show that pairs that are accelerated up to the synchrotron radiation-limited energy while meandering across both sides of the current sheet, can produce MeV flares with luminosity of ∼ 1041 erg s-1— independent ofσ e — for a black hole accreting atṁ =10-5. Pairs that are trapped in the transient current sheet can produce X-ray counterparts to the MeV flares, lasting about a day for current sheets with length of a few gravitational radii. We also show that the upstream plasma can be enriched due to photon-photon pair creation, and derive a new equilibrium magnetization ofσ e ∼ 103-104forṁ = 10-6- 10-5. Additionally, we explore the potential of magnetospheric current sheets to accelerate protons to ultra-high energies, finding that while acceleration to such energies is limited by various loss mechanisms, such as synchrotron and photopion losses from the non-thermal emission from pairs, maximal proton energies in the range of a few EeV are attainable in magnetospheric sheets forming around supermassive sub-Eddington accreting black holes.