Abstract A star that approaches a supermassive black hole (SMBH) on a circular extreme mass ratio inspiral (EMRI) can undergo Roche lobe overflow (RLOF), resulting in a phase of long-lived mass transfer onto the SMBH. If the interval separating consecutive EMRIs is less than the mass-transfer timescale driven by gravitational wave emission (typically ∼1–10 Myr), the semimajor axes of the two stars will approach each another on scales of ≲ hundreds to thousands of gravitational radii. Close flybys tidally strip gas from one or both RLOFing stars, briefly enhancing the mass-transfer rate onto the SMBH and giving rise to a flare of transient X-ray emission. If both stars reside in a common orbital plane, these close interactions will repeat on a timescale as short as hours, generating a periodic series of flares with properties (amplitudes, timescales, sources lifetimes) remarkably similar to the “quasi-periodic eruptions” (QPEs) recently observed from galactic nuclei hosting low-mass SMBHs. A cessation of QPE activity is predicted on a timescale of months to years, due to nodal precession of the EMRI orbits out of alignment by the SMBH spin. Channels for generating the requisite coplanar EMRIs include the tidal separation of binaries (Hills mechanism) or Type I inward migration through a gaseous AGN disk. Alternative stellar dynamical scenarios for QPEs, that invoke single stellar EMRIs on an eccentric orbit undergoing a runaway sequence of RLOF events, are strongly disfavored by formation rate constraints.
more »
« less
The Enhanced Population of Extreme Mass-ratio Inspirals in the LISA Band from Supermassive Black Hole Binaries
Abstract Extreme mass-ratio inspirals (EMRIs) take place when a stellar-mass black hole (BH) merges with a supermassive BH (SMBH). The gravitational-wave emission from such an event is expected to be detectable by the future Laser Interferometer Space Antenna (LISA) and other millihertz detectors. It was recently suggested that the EMRI rate in SMBH binary systems is orders of magnitude higher than the EMRI rate around a single SMBH with the same total mass. Here we show that this high rate can produce thousands of SMBH–BH sources at a redshift of unity. We predict that LISA may detect a few hundred of these EMRIs with signal-to-noise ratio above S/N ≥8 within a 4 yr mission lifetime. The remaining subthreshold sources will contribute to a large confusion noise, which is approximately an order of magnitude above LISA’s sensitivity level. Finally, we suggest that the individually detectable systems, as well as the background noise from the subthreshold EMRIs, can be used to constrain the SMBH binary fraction in the low-redshift Universe.
more »
« less
- Award ID(s):
- 2206428
- PAR ID:
- 10536114
- Publisher / Repository:
- The Astrophysical Journal Letters
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 955
- Issue:
- 2
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L27
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Among the potential milliHz gravitational wave (GW) sources for the upcoming space-based interferometer LISA are extreme- or intermediate-mass ratio inspirals (EMRI/IMRIs). These events involve the coalescence of supermassive black holes in the mass range 105M⊙ ≲ M ≲ 107M⊙ with companion BHs of much lower masses. A subset of E/IMRIs are expected to occur in the accretion discs of active galactic nuclei (AGN), where torques exerted by the disc can interfere with the inspiral and cause a phase shift in the GW waveform. Here we use a suite of two-dimensional hydrodynamical simulations with the moving-mesh code DISCO to present a systematic study of disc torques. We measure torques on an inspiraling BH and compute the corresponding waveform deviations as a function of the binary mass ratio q ≡ M2/M1, the disc viscosity (α), and gas temperature (or equivalently Mach number; $$\mathcal {M}$$). We find that the absolute value of the gas torques is within an order of magnitude of previously determined planetary migration torques, but their precise value and sign depends non-trivially on the combination of these parameters. The gas imprint is detectable by LISA for binaries embedded in AGN discs with surface densities above $$\Sigma _0\ge 10^{4-6} \rm \, g cm^{-2}$$, depending on q, α and $$\mathcal {M}$$. Deviations are most pronounced in discs with higher viscosities, and for E/IMRIs detected at frequencies where LISA is most sensitive. Torques in colder discs exhibit a noticeable dependence on the GW-driven inspiral rate as well as strong fluctuations at late stages of the inspiral. Our results further suggest that LISA may be able to place constraints on AGN disc parameters and the physics of disc-satellite interaction.more » « less
-
Abstract Roughly half of the quasiperiodic eruption (QPE) sources in galactic nuclei exhibit a remarkably regular alternating “long-short” pattern of recurrence times between consecutive flares. We show that a main-sequence star (brought into the nucleus as an extreme mass-ratio inspiral; EMRI) that passes twice per orbit through the accretion disk of the supermassive black hole (SMBH) on a mildly eccentric inclined orbit, each time shocking and ejecting optically thick gas clouds above and below the midplane, naturally reproduces observed properties of QPE flares. Inefficient photon production in the ejecta renders the QPE emission much harder than the blackbody temperature, enabling the flares to stick out from the softer quiescent disk spectrum. Destruction of the star via mass ablation limits the QPE lifetime to decades, precluding a long-lived AGN as the gaseous disk. By contrast, a tidal disruption event (TDE) naturally provides a transient gaseous disk on the requisite radial scale, with a rate exceeding the EMRI inward migration rate, suggesting that many TDEs should host a QPE. This picture is consistent with the X-ray TDE observed several years prior to the QPE appearance from GSN 069. Remarkably, a second TDE-like flare was observed from this event, starting immediately after detectable QPE activity ceased; this event could plausibly result from the (partial or complete) destruction of the QPE-generating star triggered by runaway mass loss, though other explanations cannot be excluded. Our model can also be applied to black hole–disk collisions, such as those invoked in the context of the candidate SMBH binary OJ 287.more » « less
-
Abstract A modest fraction of the stars in galactic nuclei fed toward the central supermassive black hole (SMBH) approach on low-eccentricity orbits driven by gravitational-wave radiation (extreme mass ratio inspiral (EMRI)). In the likely event that a gaseous accretion disk is created in the nucleus during this slow inspiral (e.g., via an independent tidal disruption event (TDE)), star–disk collisions generate regular short-lived flares consistent with the observed quasiperiodic eruption (QPE) sources. We present a model for the coupled star-disk evolution, which self-consistently accounts for mass and thermal energy injected into the disk from stellar collisions and associated mass ablation. For weak collision/ablation heating, the disk is thermally unstable and undergoes limit-cycle oscillations, which modulate its properties and lead to accretion-powered outbursts on timescales of years to decades, with a time-averaged accretion rate ∼0.1Ṁ Edd. Stronger collision/ablation heating acts to stabilize the disk, enabling roughly steady accretion at the EMRI-stripping rate. In either case, the stellar destruction time through ablation, and hence the maximum QPE lifetime, is ∼102–103yr, far longer than fallback accretion after a TDE. The quiescent accretion disks in QPE sources may at the present epoch be self-sustaining and fed primarily by EMRI ablation. Indeed, the observed range of secular variability broadly matches those predicted for collision-fed disks. Changes in the QPE recurrence pattern following such outbursts, similar to that observed in GSN 069, could arise from temporary misalignment between the EMRI-fed disk and the SMBH equatorial plane as the former regrows its mass after a state transition.more » « less
-
Tidal heating in a binary black hole system is driven by the absorption of energy and angular momentum by the black hole’s horizon. Previous works have shown that this phenomenon becomes particularly significant during the late stages of an extreme mass ratio inspiral (EMRI) into a rapidly spinning massive black hole, a key focus for future low-frequency gravitational-wave observations by (for instance) the Laser Interferometer Space Antenna mission. Past analyses have largely focused on quasicircular inspiral geometry, with some of the most detailed studies looking at equatorial cases. Though useful for illustrating the physical principles, this limit is not very realistic astrophysically, since the population of EMRI events is expected to arise from compact objects scattered onto relativistic orbits in galactic centers through many-body events. In this work, we extend those results by studying the importance of tidal heating in equatorial EMRIs with generic eccentricities. Our results suggest that accurate modeling of tidal heating is crucial to prevent significant dephasing and systematic errors in EMRI parameter estimation. We examine a phenomenological model for EMRIs around exotic compact objects by parametrizing deviations from the black hole (BH) picture in terms of the fraction of radiation absorbed compared to the BH case. Based on a mismatch calculation, we find that reflectivities as small as are distinguishable from the BH case, irrespective of the value of the eccentricity. We stress, however, that this finding should be corroborated by future parameter estimation studies. Published by the American Physical Society2024more » « less
An official website of the United States government

