Wearable haptic devices transmit information via touch receptors in the skin, yet devices located on parts of the body with high densities of receptors, such as fingertips and hands, impede interactions. Other locations that are well‐suited for wearables, such as the wrists and arms, suffer from lower perceptual sensitivity. The emergence of textile‐based wearable devices introduces new techniques of fabrication that can be leveraged to address these constraints and enable new modes of haptic interactions. This article formalizes the concept of “multiscale” interaction, an untapped paradigm for haptic wearables, enabling enhanced delivery of information via textile‐based haptic modules. In this approach, users choose the depth and detail of their haptic experiences by varying their interaction mode. Flexible prototyping methods enable multiscale haptic bands that provide both body‐scale interactions (on the forearm) and hand‐scale interactions (on the fingers and palm). A series of experiments assess participants’ ability to identify pressure states and spatial locations delivered by these bands across these interaction scales. A final experiment demonstrates the encoding of three‐bit information into prototypical multiscale interactions, showcasing the paradigm's efficacy. This research lays the groundwork for versatile haptic communication and wearable design, offering users the ability to select interaction modes for receiving information.
more »
« less
Fluidically programmed wearable haptic textiles
Haptic feedback offers a useful mode of communication in visually or auditorily noisy environments. The adoption of haptic devices in our everyday lives, however, remains limited, motivating research on haptic wearables constructed from materials that enable comfortable and lightweight form factors. Textiles, a material class fitting these needs and already ubiquitous in clothing, have begun to be used in haptics, but reliance on arrays of electromechanical controllers detracts from the benefits that textiles offer. Here, we mitigate the requirement for bulky hardware by developing a class of wearable haptic textiles capable of delivering high-resolution information on the basis of embedded fluidic programming. The designs of these haptic textiles enable tailorable amplitudinal, spatial, and temporal control. Combining these capabilities, we demonstrate wearables that deliver spatiotemporal cues in four directions with an average user accuracy of 87%. Subsequent demonstrations of washability, repairability, and utility for navigational tasks exemplify the capabilities of our approach.
more »
« less
- Award ID(s):
- 2144809
- PAR ID:
- 10536176
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Device
- Volume:
- 1
- Issue:
- 3
- ISSN:
- 2666-9986
- Page Range / eLocation ID:
- 100059
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vibration is a widely used mode of haptic communication, as vibrotactile cues provide salient haptic notifications to users and are easily integrated into wearable or handheld devices. Fluidic textile-based devices offer an appealing platform for the incorporation of vibrotactile haptic feedback, as they can be integrated into clothing and other conforming and compliant wearables. Fluidically driven vibrotactile feedback has primarily relied on valves to regulate actuating frequencies in wearable devices. The mechanical bandwidth of such valves limits the range of frequencies that can be achieved, particularly in attempting to reach the higher frequencies realized with electromechanical vibration actuators ( > 100 Hz). In this paper, we introduce a soft vibrotactile wearable device, constructed entirely of textiles and capable of rendering vibration frequencies between 183 and 233 Hz with amplitudes ranging from 23 to 114 g . We describe our methods of design and fabrication and the mechanism of vibration, which is realized by controlling inlet pressure and harnessing a mechanofluidic instability. Our design allows for controllable vibrotactile feedback that is comparable in frequency and greater in amplitude relative to state-of-the-art electromechanical actuators while offering the compliance and conformity of fully soft wearable devices.more » « less
-
Wearables are becoming increasingly useful, primarily due to their activity-monitoring features that enable various healthcare applications. Everyday devices like smartwatches, however, often have complex ecosystems and convoluted interfaces. These devices need constant charging and can be difficult to use, cumbersome for users interested in only simple applications. As an alternative, simpler everyday wearable, we present Hapt-Aids, self-powered on-body tags that passively monitor user activities and deliver haptic notifications. Our small-footprint devices 1) harvest energy from activity-specific sources, 2) use this energy as sensor information, and 3) convert this energy into haptic actuation using only analog hardware, without digital components or firmware. This structurally simple, triple-purpose design makes our system extremely low maintenance while being cost- and energy-efficient, leading to a friendly user experience. We present our proof-of-concept system design: a custom, unique architecture formed through theoretical modeling and evaluation studies, and we build four demo applications. Through in-lab benchmark testing and user studies, we demonstrate the potential of Hapt-Aids as alternative low-cost, easy-to-use wearables.more » « less
-
Haptic devices typically rely on rigid actuators and bulky power supply systems, limiting wearability. Soft materials improve comfort, but careful distribution of stiffness is required to ground actuation forces and enable load transfer to the skin. We present Haptiknit, an approach in which soft, wearable, knit textiles with embedded pneumatic actuators enable programmable haptic display. By integrating pneumatic actuators within high- and low-stiffness machine-knit layers, each actuator can transmit 40 newtons in force with a bandwidth of 14.5 hertz. We demonstrate the concept with an adjustable sleeve for the forearm coupled to an untethered pneumatic control system that conveys a diverse array of social touch signals. We assessed the sleeve’s performance for discriminative and affective touch in a three-part user study and compared our results with those of prior electromagnetically actuated approaches. Haptiknit improves touch localization compared with vibrotactile stimulation and communicates social touch cues with fewer actuators than pneumatic textiles that do not invoke distributed stiffness. The Haptiknit sleeve resulted in similar recognition of social touch gestures compared to a voice-coil array but represented a more portable and comfortable form factor.more » « less
-
Textiles hold great promise as a soft yet durable material for building comfortable robotic wearables and assistive devices at low cost. Nevertheless, the development of smart wearables composed entirely of textiles has been hindered by the lack of a viable sheet-based logic architecture that can be implemented using conventional fabric materials and textile manufacturing processes. Here, we develop a fully textile platform for embedding pneumatic digital logic in wearable devices. Our logic-enabled textiles support combinational and sequential logic functions, onboard memory storage, user interaction, and direct interfacing with pneumatic actuators. In addition, they are designed to be lightweight, easily integrable into regular clothing, made using scalable fabrication techniques, and durable enough to withstand everyday use. We demonstrate a textile computer capable of input-driven digital logic for controlling untethered wearable robots that assist users with functional limitations. Our logic platform will facilitate the emergence of future wearables powered by embedded fluidic logic that fully leverage the innate advantages of their textile construction.more » « less
An official website of the United States government

