skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative Comparisons between WSA Implementations
Abstract The Wang–Sheeley–Arge (WSA) model has been in use for decades and remains a popular, economical approach to modeling the solar coronal magnetic field and forecasting conditions in the inner heliosphere. Given its usefulness, it is unsurprising that a number of WSA implementations have been developed by various groups with different computational approaches. While the WSA magnetic field model has traditionally been calculated using a spherical harmonic expansion of the solar magnetic field, finite-difference potential field solutions can offer speed and/or accuracy advantages. However, the creation of new versions of WSA requires that we ensure the solutions from these new models are consistent with established versions and that we quantify for the user community to what degree and in what ways they differ. In this paper, we present side-by-side comparisons of WSA models produced using the traditional, spherical harmonic–based implementation developed by Wang, Sheeley, and Arge with WSA models produced using a recently open-sourced finite-difference code from the CORHEL modeling suite called POT3D. We present comparisons of the terminal solar wind speed and magnetic field at the outer boundaries of the models, weighing these against the variation of the WSA model in the presence of small perturbations in the computational procedure, parameters, and inputs. We also compare the footpoints of magnetic field lines traced from the outer boundaries and the locations of open field in the models. We find that the traced field-line footpoints show remarkable agreement, with the greatest differences near the magnetic neutral line and in the polar regions.  more » « less
Award ID(s):
2028154
PAR ID:
10536190
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
970
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Since the launch on 2018 August 12, the Parker Solar Probe (PSP) has completed its first five orbits around the Sun, having reached down to ~28 solar radii at perihelion 5 on 2020 June 7. More recently, the Solar Orbiter (SolO) made its first close approach to the Sun at 0.52 AU on 2020 June 15, nearly 4 months after the launch. Using a 3D heliospheric MHD model coupled with the Wang-Sheeley-Arge (WSA) coronal model using the Air Force Data Assimilative Photospheric flux Transport (ADAPT) magnetic maps as input, we simulate the time-varying inner heliosphere, including the trajectories of PSP and SolO, during the current solar minimum period between 2018 and 2020. Above the ADAPT-WSA model outer boundary at 21.5 solar radii, we solve the Reynolds averaged MHD equations with turbulence and pickup ions taken into account and compare the simulation results with the PSP solar wind and magnetic field data, with particular emphasis on the large-scale solar wind structure and magnetic connectivity during each solar encounter. 
    more » « less
  2. The Sun emits a stream of charged particles called the solar wind, which is the primary driver of space weather and geomagnetic disturbances. Modeling and observations complement each other to help us identify and understand the physical processes governing the solar wind dynamics on different scales. Numerical models of the solar wind have greatly improved in recent years with advances in computational infrastructure and by employing data-driven or data-assimilative approaches. Designed primarily for modeling the partially ionized space plasma using adaptive mesh refinement technique on Cartesian or spherical grids, the Multi-scale Fluid-kinetic Simulation Suite (MS-FLUKSS) is arguably one of the most sophisticated numerical codes for simulating the solar wind flow. To inform potential users and interested members of the space weather community, we present a brief summary of the current state of the solar wind models developed in the MS-FLUKSS framework, with an emphasis on the 3D heliospheric MHD models driven and constrained by remote/in situ observations and empirical coronal models such as the Wang-Sheeley-Arge model. We also discuss potential scientific and operational applications of our solar wind models on prediction of space weather (e.g., high speed streams, coronal mass ejections, and interplanetary shocks) throughout the solar system. 
    more » « less
  3. Abstract In this work, we extend Leighton’s diffusion model describing the turbulent mixing of magnetic footpoints on the solar wind source surface. The present Lagrangian stochastic model is based on the spherical Ornstein–Uhlenbeck process with drift that is controlled by the rotation frequency Ω of the Sun, the Lagrangian integral timescaleτL, and the root-mean-square footpoint velocityVrms. The Lagrangian velocity and the positions of magnetic footpoints on the solar wind source surface are obtained from the solutions of a set of stochastic differential equations, which are solved numerically. The spherical diffusion model of Leighton is recovered in the singular Markov limit when the Lagrangian integral timescale tends to zero while keeping the footpoint diffusivity finite. In contrast to the magnetic field lines driven by standard Brownian processes on the solar wind source surface, the interplanetary magnetic field lines are smooth differentiable functions with finite path lengths in our model. The path lengths of the boundary-driven interplanetary magnetic field lines and their probability distributions at 1 au are computed numerically, and their dependency with respect to the controlling parameters is investigated. The path-length distributions are shown to develop a significant skewness as the width of the distributions increases. 
    more » « less
  4. Abstract We present the HelioCubed, a high-order magnetohydrodynamic (MHD) code designed for modeling the inner heliosphere. The code is designed to achieve 4th order accuracy both in space and in time. In addition, HelioCubed can perform simulations on mapped grids, such as those based on cubed spheres, which makes it possible to overcome stability limitations caused by the geometrical singularity at the polar axis of a spherical grid, thus enabling substantially larger time steps. HelioCubed has been developed using the high-level Proto library, ensures performance portability across CPU and GPU architectures, and supports back-end implementations, e.g., CUDA, HIP, OpenMP, and MPI. The code is compatible with the HDF5 library, which facilitates seamless data handling for simulations and boundary conditions derived from semi-empirical and MHD models of the solar corona. While presenting the results of preliminary simulations, we demonstrate that our simulations are indeed performed with 4th order of accuracy. Our approach ensures that HelioCubed solves the MHD equations preserving the radial flow to machine round-off error even on cubed-sphere grids. Solar wind simulations are performed using the boundary conditions provided by the Wang–Sheeley–Arge coronal model of the ambient solar wind. It also allows us to to simulate coronal mass ejections using observation-driven flux rope models. These capabilities make HelioCubed a versatile and powerful tool to advance heliophysics research and space weather forecasting. 
    more » « less
  5. Abstract To address Objective II of the National Space Weather Strategy and Action Plan “Develop and Disseminate Accurate and Timely Space Weather Characterization and Forecasts” and US Congress PROSWIFT Act 116–181, our team is developing a new set of open-source software that would ensure substantial improvements of Space Weather (SWx) predictions. On the one hand, our focus is on the development of data-driven solar wind models. On the other hand, each individual component of our software is designed to have accuracy higher than any existing SWx prediction tools with a dramatically improved performance. This is done by the application of new computational technologies and enhanced data sources. The development of such software paves way for improved SWx predictions accompanied with an appropriate uncertainty quantification. This makes it possible to forecast hazardous SWx effects on the space-borne and ground-based technological systems, and on human health. Our models include (1) a new, open-source solar magnetic flux model (OFT), which evolves information to the back side of the Sun and its poles, and updates the model flux with new observations using data assimilation methods; (2) a new potential field solver (POT3D) associated with the Wang–Sheeley–Arge coronal model, and (3) a new adaptive, 4-th order of accuracy solver (HelioCubed) for the Reynolds-averaged MHD equations implemented on mapped multiblock grids (cubed spheres). We describe the software and results obtained with it, including the application of machine learning to modeling coronal mass ejections, which makes it possible to improve SWx predictions by decreasing the time-of-arrival mismatch. The tests show that our software is formally more accurate and performs much faster than its predecessors used for SWx predictions. 
    more » « less