Home-based health monitoring systems are important to many conditions (e.g., aging, chronic diseases). The absence of suitable data collection infrastructure is a fundamental barrier to the development of related algorithms and systems. In this poster, we present Proteus, a robust, extensible and scalable data collection infrastructure, to enable small research teams to manage large deployments. We identify the desired features and achieve them by combining mature technologies and new components: i) extensibility with new, diverse sensor types and data formats with a few lines of coding (LOC) efforts; ii) scalability in managing sensor/edge devices to automate many deployment, management tasks; iii) resilience to system failures and network outage. Experiments on a prototype show zero data loss or system error for one sensor node running 10 days, and 99.95% of data received for 32 emulated sensors sending data at 200 Mbps, 20 and 100 fold reductions in node setup efforts and LOC for new sensor types. The preliminary results show Proteus is promising for large-scale longitudinal deployment of home-based health monitoring.
more »
« less
Proteus: Towards a Manageability-focused Home-based Health Monitoring Infrastructure
A data collection infrastructure is vital for generating sufficient amounts and diversity of data necessary for developing algorithms in home-based health monitoring. However, the manageability— deployment and operation efforts—of such an infrastructure has long been overlooked. Even a small size of a dozen homes may incur enormous manual efforts on the research team, including installing, configuring and updating of sensor, edge devices; continuous monitoring for faults and errors to prevent data losses, and integrating new sensing modalities. In this paper, we present Proteus, an easily managed infrastructure designed to automate much of the work in deploying and operating such systems. Proteus includes: i) scalable, continuous deployment and update of devices with automatic bootstrapping; ii) automatic fault and error monitoring and recovery with watchdogs and LED feedback, and complementary edge and cloud storage backups; and iii) an easy-to-use data-agnostic pipeline for integrating new modalities. We demonstrate our system’s robustness through different sets of experiments: 3 sensor nodes running for 24 days sending data (17.3 Mbps aggregate rate), and 16 emulated sensors (92.8 Mbps aggregate rate). All such experiments have data loss rates less than 1%. Further we reduce human efforts by 25-fold and code required for adding new data modality by 25-fold. Our results show that Proteus is a promising solution for enabling research teams to effectively manage home-based health monitoring at small to medium sizes.
more »
« less
- Award ID(s):
- 1951880
- PAR ID:
- 10536400
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400701269
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Location:
- Houston TX USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Home networks lack the powerful security tools and trained personnel available in enterprise networks. This compli- cates efforts to address security risks in residential settings. While prior efforts explore outsourcing network traffic to cloud or cloudlet services, such an approach exposes that network traffic to a third party, which introduces privacy risks, particularly where traffic is decrypted (e.g., using Transport Layer Security Inspection (TLSI)). To enable security screening locally, home networks could introduce new physical hardware, but the capital and deployment costs may impede deployment. In this work, we explore a system to leverage existing available devices, such as smartphones, tablets and laptops, already inside a home network to create a platform for traffic inspection. This software-based solution avoids new hardware deployment and allows decryption of traffic without risk of new third parties. Our investigation compares on-router inspection of traffic with an approach using that same router to direct traffic through smartphones in the local network. Our performance evaluation shows that smartphone middleboxes can substantially increase the throughput of communication from around 10 Mbps in the on-router case to around 90 Mbps when smartphones are used. This approach increases CPU usage at the router by around 15%, with a 20% CPU usage increase on a smartphone (with single core processing). The network packet latency increases by about 120 milliseconds.more » « less
-
Abstract 24/7 continuous recording of in-home daily trajectories is informative for health status assessment (e.g., monitoring Alzheimer’s, dementia based on behavior patterns). Indoor device-free localization/tracking are ideal because no user efforts on wearing devices are needed. However, prior work mainly focused on improving the localization accuracy. They relied on well-calibrated sensor placements, which require hours of intensive manual setup and respective expertise, feasible only at small scale and by mostly researchers themselves. Scaling the deployments to tens or hundreds of real homes, however, would incur prohibitive manual efforts, and become infeasible for layman users. We presentSCALING, a plug-and-play indoor trajectory monitoring system that layman users can easily set up by walking a one-minute loop trajectory after placing radar nodes on walls. It uses a self calibrating algorithm that estimates sensor locations through their distance measurements to the person walking the trajectory, a trivial effort without taxing layman users physically or cognitively. We evaluateSCALINGvia simulations and two testbeds (in lab and home configurations of sizes 3$$\times$$ 6 sq m and 4.5$$\times$$ 8.5 sq m). Experimental results demonstrate thatSCALINGoutperformed the baseline using the approximate multidimensional scaling (MDS, the most relevant method in the context of self calibration) by 3.5 m/1.6 m in 80-percentile error of self calibration and tracking, respectively. Notably, only 1% degradation in performance has been observed withSCALINGcompared to the classical multilateration with known sensor locations (anchors), which costs hours of intensive calibrating effort. In addition, we conduct Monte Carlo experiments to numerically analyze the impact of sensor placements and develop practical guidelines for deployment in real life scenarios.more » « less
-
Abstract Recent developments of micro‐sensors and flexible electronics allow for the manufacturing of health monitoring devices, including electrocardiogram (ECG) detection systems for inpatient monitoring and ambulatory health diagnosis, by mounting the device on the chest. Although some commercial devices in reported articles show examples of a portable recording of ECG, they lose valuable data due to significant motion artifacts. Here, a new class of strain‐isolating materials, hybrid interfacial physics, and soft material packaging for a strain‐isolated, wearable soft bioelectronic system (SIS) is reported. The fundamental mechanism of sensor‐embedded strain isolation is defined through a combination of analytical and computational studies and validated by dynamic experiments. Comprehensive research of hard‐soft material integration and isolation mechanics provides critical design features to minimize motion artifacts that can occur during both mild and excessive daily activities. A wireless, fully integrated SIS that incorporates a breathable, perforated membrane can measure real‐time, continuous physiological data, including high‐quality ECG, heart rate, respiratory rate, and activities. In vivo demonstration with multiple subjects and simultaneous comparison with commercial devices captures the SIS's outstanding performance, offering real‐world, continuous monitoring of the critical physiological signals with no data loss over eight consecutive hours in daily life, even with exaggerated body movements.more » « less
-
Abstract Today, patients are demanding a newer and more sophisticated health care system, one that is more personalized and matches the speed of modern life. For the latency and energy efficiency requirements to be met for a real‐time collection and analysis of health data, an edge computing environment is the answer, combined with 5G speeds and modern computing techniques. Previous health care surveys have focused on new fog architecture and sensor types, which leaves untouched the aspect of optimal computing techniques, such as encryption, authentication, and classification that are used on the devices deployed in an edge computing architecture. This paper aims first to survey the current and emerging edge computing architectures and techniques for health care applications, as well as to identify requirements and challenges of devices for various use cases. Edge computing application primarily focuses on the classification of health data involving vital sign monitoring and fall detection. Other low‐latency applications perform specific symptom monitoring for diseases, such as gait abnormalities in Parkinson's disease patients. We also present our exhaustive review on edge computing data operations that include transmission, encryption, authentication, classification, reduction, and prediction. Even with these advantages, edge computing has some associated challenges, including requirements for sophisticated privacy and data reduction methods to allow comparable performance to their Cloud‐based counterparts, but with lower computational complexity. Future research directions in edge computing for health care have been identified to offer a higher quality of life for users if addressed.more » « less
An official website of the United States government

