skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advanced Modeling and Optimization Strategies for Process Synthesis
This article provides a systematic review of recent progress in optimization-based process synthesis. First, we discuss multiscale modeling frameworks featuring targeting approaches, phenomena-based modeling, unit operation–based modeling, and hybrid modeling. Next, we present the expanded scope of process synthesis objectives, highlighting the considerations of sustainability and operability to assure cost-competitive production in an increasingly dynamic market with growing environmental awareness. Then, we review advances in optimization algorithms and tools, including emerging machine learning–and quantum computing–assisted approaches. We conclude by summarizing the advances in and perspectives for process synthesis strategies.  more » « less
Award ID(s):
2312457 2312458
PAR ID:
10536727
Author(s) / Creator(s):
;
Publisher / Repository:
Annual Review of Chemical Biomolecular Engineering
Date Published:
Journal Name:
Annual Review of Chemical and Biomolecular Engineering
Volume:
15
Issue:
1
ISSN:
1947-5438
Page Range / eLocation ID:
81 to 103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This review highlights recent progress in additive manufacturing (AM) techniques for polymer composites reinforced with nanoparticles, short fibers, and continuous fibers. It also explores the integration of functional resins and fibers to enable advanced capabilities such as shape morphing, enhanced electrical and thermal conductivity, and self-healing behavior. Building on these advances, the review examines computational design strategies that optimize material distribution and fiber orientation. Representative approaches range from density-based methods to emerging level-set topology optimization frameworks, with objectives evolving from improving mechanical performance to addressing complex multi-physics functional requirements. The review also identifies emerging opportunities, including the need for technological innovations to further improve mechanical properties and enable adaptable multifunctionality. Further advances in theoretical modeling and integrated design-printing workflows are also discussed. By synthesizing these developments, this review aims to foster interdisciplinary collaborations and accelerate innovation in AM-enabled composite materials across a wide range of applications. 
    more » « less
  2. Abstract Purpose of ReviewWe review recent advances in algorithmic development and validation for modeling and control of soft robots leveraging the Koopman operator theory. Recent FindingsWe identify the following trends in recent research efforts in this area. (1) The design of lifting functions used in the data-driven approximation of the Koopman operator is critical for soft robots. (2) Robustness considerations are emphasized. Works are proposed to reduce the effect of uncertainty and noise during the process of modeling and control. (3) The Koopman operator has been embedded into different model-based control structures to drive the soft robots. SummaryBecause of their compliance and nonlinearities, modeling and control of soft robots face key challenges. To resolve these challenges, Koopman operator-based approaches have been proposed, in an effort to express the nonlinear system in a linear manner. The Koopman operator enables global linearization to reduce nonlinearities and/or serves as model constraints in model-based control algorithms for soft robots. Various implementations in soft robotic systems are illustrated and summarized in the review. 
    more » « less
  3. Abstract Controlled synthesis of semiconductor nano/microparticles has attracted substantial attention for use in numerous applications from photovoltaics to photocatalysis and bioimaging due to the breadth of available physicochemical and optoelectronic properties. Microfluidic material synthesis strategies have recently been demonstrated as an effective technique for rapid development, controlled synthesis, and continuous manufacturing of solution‐processed semiconductor nano/microparticles, due to enhanced parametric control enabling precise tuning of material properties, size, and morphologies. In this review, the basics of microfluidic material synthesis approaches complemented with recent advances in the flow fabrication of metal oxide, chalcogenide, and perovskite semiconductor particles are discussed. Furthermore, advancements in artificial intelligence (AI)‐driven materials–space exploration and accelerated formulation optimization using modular microfluidic reactors are outlined. Finally, future directions for the fabrication of semiconducting materials in flow and the implementation of AI with automated microfluidic reactors for accelerated material discovery and development are presented. 
    more » « less
  4. This review focuses on how the modeling of dense granular media has advanced over the last 15 years. The jumping-off point of our review is the μ( I) rheology for dry granular flow, which opened the door to generic flow field modeling but was primarily geared toward problems involving small monodisperse grains of simple shapes. Our review focuses on advances in modeling more material types and behaviors including new approaches for modeling finite-grain-size effects or nonlocality, polydispersity and unmixing, and nontrivial grain shapes. We also discuss growing application areas with tractable order-reduction strategies with a focus on intrusion and locomotion problems. 
    more » « less
  5. The early detection of tumors and precancerous conditions is vital for cancer diagnosis. Advances in fluorescence microscopic techniques and materials synthesis processes have revolutionized biomarker detection and image-guided cancer surveillance. In particular, novel materials-based diagnostic tools and innovative therapies have facilitated a precise understanding of biological processes at the molecular level. This critical review presents an overview of bioimaging probes, including functionalized chromophoric systems, non-functionalized chromophoric systems, and nanoscale biosensors. Technical challenges and future directions related to these approaches are considered. 
    more » « less