skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-Effort Crowds: Limited Liability via Tournaments
We consider the crowdsourcing setting where, in response to the assigned tasks, agents strategically decide both how much effort to exert (from a continuum) and whether to manipulate their reports. The goal is to design payment mechanisms that (1) satisfy limited liability (all payments are non-negative), (2) reduce the principal’s cost of budget, (3) incentivize effort and (4) incentivize truthful responses. In our framework, the payment mechanism composes a performance measurement, which noisily evaluates agents’ effort based on their reports, and a payment function, which converts the scores output by the performance measurement to payments. Previous literature suggests applying a peer prediction mechanism combined with a linear payment function. This method can achieve either (1), (3) and (4), or (2), (3) and (4) in the binary effort setting. In this paper, we suggest using a rank-order payment function (tournament). Assuming Gaussian noise, we analytically optimize the rank-order payment function, and identify a sufficient statistic, sensitivity, which serves as a metric for optimizing the performance measurements. This helps us obtain (1), (2) and (3) simultaneously. Additionally, we show that adding noise to agents’ scores can preserve the truthfulness of the performance measurements under the non-linear tournament, which gives us all four objectives. Our real-data estimated agent-based model experiments show that our method can greatly reduce the payment of effort elicitation while preserving the truthfulness of the performance measurement. In addition, we empirically evaluate several commonly used performance measurements in terms of their sensitivities and strategic robustness.  more » « less
Award ID(s):
2007256
PAR ID:
10536739
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
ISBN:
9781450394161
Page Range / eLocation ID:
3467 to 3477
Format(s):
Medium: X
Location:
Austin TX USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Peer prediction mechanisms incentivize agents to truthfully report their signals even in the absence of verification by comparing agents’ reports with those of their peers. In the detail-free multi-task setting, agents are asked to respond to multiple independent and identically distributed tasks, and the mechanism does not know the prior distribution of agents’ signals. The goal is to provide an epsilon-strongly truthful mechanism where truth-telling rewards agents “strictly” more than any other strategy profile (with epsilon additive error) even for heterogeneous agents, and to do so while requiring as few tasks as possible. We design a family of mechanisms with a scoring function that maps a pair of reports to a score. The mechanism is strongly truthful if the scoring function is “prior ideal”. Moreover, the mechanism is epsilon-strongly truthful as long as the scoring function used is sufficiently close to the ideal scoring function. This reduces the above mechanism design problem to a learning problem – specifically learning an ideal scoring function. Because learning the prior distribution is sufficient (but not necessary) to learn the scoring function, we can apply standard learning theory techniques that leverage side information about the prior (e.g., that it is close to some parametric model). Furthermore, we derive a variational representation of an ideal scoring function and reduce the learning problem into an empirical risk minimization. We leverage this reduction to obtain very general results for peer prediction in the multi-task setting. Specifically, Sample Complexity. We show how to derive good bounds on the number of tasks required for different types of priors–in some cases exponentially improving previous results. In particular, we can upper bound the required number of tasks for parametric models with bounded learning complexity. Furthermore, our reduction applies to myriad continuous signal space settings. To the best of our knowledge, this is the first peer-prediction mechanism on continuous signals designed for the multi-task setting. Connection to Machine Learning. We show how to turn a soft-predictor of an agent’s signals (given the other agents’ signals) into a mechanism. This allows the practical use of machine learning algorithms that give good results even when many agents provide noisy information. Stronger Properties. In the finite setting, we obtain -strongly truthful mechanisms for any stochastically relevant prior. Prior works either only apply to more restrictive settings, or achieve a weaker notion of truthfulness (informed truthfulness). 
    more » « less
  2. In many societal resource allocation domains, machine learning methods are increasingly used to either score or rank agents in order to decide which ones should receive either resources (e.g., homeless services) or scrutiny (e.g., child welfare investigations) from social services agencies. An agency’s scoring function typically operates on a feature vector that contains a combination of self-reported features and information available to the agency about individuals or households. This can create incentives for agents to misrepresent their self-reported features in order to receive resources or avoid scrutiny, but agencies may be able to selectively audit agents to verify the veracity of their reports. We study the problem of optimal auditing of agents in such settings. When decisions are made using a threshold on an agent’s score, the optimal audit policy has a surprisingly simple structure, uniformly auditing all agents who could benefit from lying. While this policy can, in general be hard to compute because of the difficulty of identifying the set of agents who could benefit from lying given a complete set of reported types, we also present necessary and sufficient conditions under which it is tractable. We show that the scarce resource setting is more difficult, and exhibit an approximately optimal audit policy in this case. In addition, we show that in either setting verifying whether it is possible to incentivize exact truthfulness is hard even to approximate. However, we also exhibit sufficient conditions for solving this problem optimally, and for obtaining good approximations. 
    more » « less
  3. null (Ed.)
    In many societal resource allocation domains, machine learn- ing methods are increasingly used to either score or rank agents in order to decide which ones should receive either resources (e.g., homeless services) or scrutiny (e.g., child welfare investigations) from social services agencies. An agency’s scoring function typically operates on a feature vector that contains a combination of self-reported features and information available to the agency about individuals or households. This can create incentives for agents to misrepresent their self-reported features in order to receive resources or avoid scrutiny, but agencies may be able to selectively au- dit agents to verify the veracity of their reports. We study the problem of optimal auditing of agents in such settings. When decisions are made using a threshold on an agent’s score, the optimal audit policy has a surprisingly simple structure, uniformly auditing all agents who could benefit from lying. While this policy can, in general be hard to compute because of the difficulty of identifying the set of agents who could benefit from lying given a complete set of reported types, we also present necessary and sufficient conditions under which it is tractable. We show that the scarce resource setting is more difficult, and exhibit an approximately optimal audit policy in this case. In addition, we show that in either setting verifying whether it is possible to incentivize exact truthfulness is hard even to approximate. However, we also exhibit sufficient conditions for solving this problem optimally, and for obtaining good approximations. 
    more » « less
  4. Strictly proper scoring rules (SPSR) are incentive compatible for eliciting information about random variables from strategic agents when the principal can reward agents after the realization of the random variables. They also quantify the quality of elicited information, with more accurate predictions receiving higher scores in expectation. In this paper, we extend such scoring rules to settings where a principal elicits private probabilistic beliefs but only has access to agents’ reports. We name our solution Surrogate Scoring Rules (SSR). SSR is built on a bias correction step and an error rate estimation procedure for a reference answer defined using agents’ reports. We show that, with a little information about the prior distribution of the random variables, SSR in a multi-task setting recover SPSR in expectation, as if having access to the ground truth. Therefore, a salient feature of SSR is that they quantify the quality of information despite the lack of ground truth, just as SPSR do for the setting with ground truth. As a by-product, SSR induce dominant uniform strategy truthfulness in reporting. Our method is verified both theoretically and empirically using data collected from real human forecasters. 
    more » « less
  5. Trees on farms provide environmental benefits to society and improve agricultural productivity for farmers. We study incentive schemes for afforestation on farms through the lens of contract theory, designing conditional cash transfer schemes that encourage farmers to sustain tree growth. We capture the tree growth process as a Markov chain whose evolution is affected by the agent’s (farmer) actions – e.g., investing costly effort or cutting the tree for firewood. The principal has imperfect information about the agent’s costs and actions taken, and wants to maximize long-run tree survival with minimal payment. We show how to calculate the optimal contract structure in our model: notably, it can involve time-varying payments and may incentivize the agent to join the program but abandon it prematurely. 
    more » « less