We consider the crowdsourcing setting where, in response to the assigned tasks, agents strategically decide both how much effort to exert (from a continuum) and whether to manipulate their reports. The goal is to design payment mechanisms that (1) satisfy limited liability (all payments are non-negative), (2) reduce the principal’s cost of budget, (3) incentivize effort and (4) incentivize truthful responses. In our framework, the payment mechanism composes a performance measurement, which noisily evaluates agents’ effort based on their reports, and a payment function, which converts the scores output by the performance measurement to payments. Previous literature suggests applying a peer prediction mechanism combined with a linear payment function. This method can achieve either (1), (3) and (4), or (2), (3) and (4) in the binary effort setting. In this paper, we suggest using a rank-order payment function (tournament). Assuming Gaussian noise, we analytically optimize the rank-order payment function, and identify a sufficient statistic, sensitivity, which serves as a metric for optimizing the performance measurements. This helps us obtain (1), (2) and (3) simultaneously. Additionally, we show that adding noise to agents’ scores can preserve the truthfulness of the performance measurements under the non-linear tournament, which gives us all four objectives. Our real-data estimated agent-based model experiments show that our method can greatly reduce the payment of effort elicitation while preserving the truthfulness of the performance measurement. In addition, we empirically evaluate several commonly used performance measurements in terms of their sensitivities and strategic robustness. 
                        more » 
                        « less   
                    
                            
                            Measurement Integrity in Peer Prediction: A Peer Assessment Case Study
                        
                    
    
            We propose measurement integrity, a property related to ex post reward fairness, as a novel desideratum for peer prediction mechanisms in many natural applications. Like robustness against strategic reporting, the property that has been the primary focus of the peer prediction literature, measurement integrity is an important consideration for understanding the practical performance of peer prediction mechanisms. We perform computational experiments, both with an agent-based model and with real data, to empirically evaluate peer prediction mechanisms according to both of these important properties. Our evaluations simulate the application of peer prediction mechanisms to peer assessment---a setting in which ex post fairness concerns are particularly salient. We find that peer prediction mechanisms, as proposed in the literature, largely fail to demonstrate significant measurement integrity in our experiments. We also find that theoretical properties concerning robustness against strategic reporting are somewhat noisy predictors of empirical performance. Further, there is an apparent trade-off between our two dimensions of analysis. The best-performing mechanisms in terms of measurement integrity are highly susceptible to strategic reporting. Ultimately, however, we show that supplementing mechanisms with realistic parametric statistical models can, in some cases, improve performance along both dimensions of our analysis and result in mechanisms that strike the best balance between them. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2007256
- PAR ID:
- 10536742
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400701047
- Page Range / eLocation ID:
- 369 to 389
- Format(s):
- Medium: X
- Location:
- London United Kingdom
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Peer review is an integral component of contemporary science. While peer review focuses attention on promising and interesting science, it also encourages scientists to pursue some questions at the expense of others. Here, we use ideas from forecasting assessment to examine how two modes of peer review—ex ante review of proposals for future work and ex post review of completed science—motivate scientists to favor some questions instead of others. Our main result is that ex ante and ex post peer review push investigators toward distinct sets of scientific questions. This tension arises because ex post review allows investigators to leverage their own scientific beliefs to generate results that others will find surprising, whereas ex ante review does not. Moreover, ex ante review will favor different research questions depending on whether reviewers rank proposals in anticipation of changes to their own personal beliefs or to the beliefs of their peers. The tension between ex ante and ex post review puts investigators in a bind because most researchers need to find projects that will survive both. By unpacking the tension between these two modes of review, we can understand how they shape the landscape of science and how changes to peer review might shift scientific activity in unforeseen directions.more » « less
- 
            For the assignment problem where multiple indivis- ible items are allocated to a group of agents given their ordinal preferences, we design randomized mechanisms that satisfy first-choice maximality (FCM), i.e., maximizing the number of agents as- signed their first choices, together with Pareto- efficiency (PE). Our mechanisms also provide guarantees of ex-ante and ex-post fairness. The generalizedeager Boston mechanism is ex-ante envy-free, and ex-post envy-free up to one item (EF1). The generalized probabilistic Boston mech- anism is also ex-post EF1, and satisfies ex-ante ef- ficiency instead of fairness. We also show that no strategyproof mechanism satisfies ex-post PE, EF1, and FCM simultaneously. In doing so, we expand the frontiers of simultaneously providing efficiency and both ex-ante and ex-post fairness guarantees for the assignment problem.more » « less
- 
            Most permissionless blockchain networks run on peer-to-peer (P2P) networks, which offer flexibility and decentralization at the expense of performance (e.g., network latency). Historically, this tradeoff has not been a bottleneck for most blockchains. However, an emerging host of blockchain-based applications (e.g., decentralized finance) are increasingly sensitive to latency; users who can reduce their network latency relative to other users can accrue (sometimes significant) financial gains. In this work, we initiate the study of strategic latency reduction in blockchain P2P networks. We first define two classes of latency that are of interest in blockchain applications. We then show empirically that a strategic agent who controls only their local peering decisions can manipulate both types of latency, achieving 60% of the global latency gains provided by the centralized, paid service bloXroute, or, in targeted scenarios, comparable gains. Finally, we show that our results are not due to the poor design of existing P2P networks. Under a simple network model, we theoretically prove that an adversary can always manipulate the P2P network's latency to their advantage, provided the network experiences sufficient peer churn and transaction activity.more » « less
- 
            null (Ed.)In comparison with conventional content delivery networks, peer-to-peer (p2p) content delivery is promising to save cost and handle high peak-demand, and can also complement the decentralized storage networks such as Filecoin. However, reliable p2p delivery requires proper enforcement of delivery fairness, i.e., the deliverers should be rewarded according to their in-time delivery. Unfortunately, most existing studies on delivery fairness are based on non-cooperative game-theoretic assumptions that are arguably unrealistic in the ad-hoc p2p setting. We for the first time put forth an expressive yet still minimalist security notion for desired fair p2p content delivery, and give two efficient solutions 𝖥𝖺𝗂𝗋𝖣𝗈𝗐𝗇𝗅𝗈𝖺𝖽 and 𝖥𝖺𝗂𝗋𝖲𝗍𝗋𝖾𝖺𝗆 via the blockchain for p2p downloading and p2p streaming scenarios, respectively. Our designs not only guarantee delivery fairness to ensure deliverers be paid (nearly) proportional to their in-time delivery but also ensure the content consumers and content providers are fairly treated. The fairness of each party can be guaranteed when the other two parties collude to arbitrarily misbehave. Moreover, the systems are efficient in the sense of attaining nearly asymptotically optimal on-chain costs and deliverer communication. We implement the protocols and build the prototype systems atop the Ethereum Ropsten network. Extensive experiments done in LAN and WAN settings showcase their high practicality.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    