This study aimed to investigate the key technical and psychological factors that impact the architecture, engineering, and construction (AEC) professionals’ trust in collaborative robots (cobots) powered by artificial intelligence (AI). This study seeks to address the critical knowledge gaps surrounding the establishment and reinforcement of trust among AEC professionals in their collaboration with AI-powered cobots. In the context of the construction industry, where the complexities of tasks often necessitate human–robot teamwork, understanding the technical and psychological factors influencing trust is paramount. Such trust dynamics play a pivotal role in determining the effectiveness of human–robot collaboration on construction sites. This research employed a nationwide survey of 600 AEC industry practitioners to shed light on these influential factors, providing valuable insights to calibrate trust levels and facilitate the seamless integration of AI-powered cobots into the AEC industry. Additionally, it aimed to gather insights into opportunities for promoting the adoption, cultivation, and training of a skilled workforce to effectively leverage this technology. A structural equation modeling (SEM) analysis revealed that safety and reliability are significant factors for the adoption of AI-powered cobots in construction. Fear of being replaced resulting from the use of cobots can have a substantial effect on the mental health of the affected workers. A lower error rate in jobs involving cobots, safety measurements, and security of data collected by cobots from jobsites significantly impact reliability, and the transparency of cobots’ inner workings can benefit accuracy, robustness, security, privacy, and communication and result in higher levels of automation, all of which demonstrated as contributors to trust. The study’s findings provide critical insights into the perceptions and experiences of AEC professionals toward adoption of cobots in construction and help project teams determine the adoption approach that aligns with the company’s goals workers’ welfare.
more »
« less
Trust in Construction AI-Powered Collaborative Robots: A Qualitative Empirical Analysis
Construction technology researchers and forward-thinking companies are experimenting with collaborative robots (aka cobots), powered by artificial intelligence (AI), to explore various automation scenarios as part of the digital transformation of the industry. Intelligent cobots are expected to be the dominant type of robots in the future of work in construction. However, the black-box nature of AI-powered cobots and unknown technical and psychological aspects of introducing them to job sites are precursors to trust challenges. By analyzing the results of semi-structured interviews with construction practitioners using grounded theory, this paper investigates the characteristics of trustworthy AI-powered cobots in construction. The study found that while the key trust factors identified in a systematic literature review -conducted previously by the authors- resonated with the field experts and end users, other factors such as financial considerations and the uncertainty associated with change were also significant barriers against trusting AI-powered cobots in construction.
more »
« less
- Award ID(s):
- 2047138
- PAR ID:
- 10447910
- Editor(s):
- Turkan, Yelda; Louis, Joseph; Leite, Fernanda; Ergan, Semiha
- Date Published:
- Journal Name:
- 2023 ASCE International Conference on Computing in Civil Engineering
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Introducing robots to future construction sites will impose extra uncertainties and necessitate workers’ situational awareness (SA) of them. While previous literature has suggested that system errors, trust changes, and time pressure may affect SA, the linkage between these factors and workers’ SA in the future construction industry is understudied. Therefore, this study aimed to fill the research gap by simulating a future bricklaying worker-robot collaborative task where participants experienced robot errors and time pressure during the interaction. The results indicated that robot errors significantly impacted subjects’ trust in robots. However, under time pressure in time-critical construction tasks, workers tended to recover their reduced trust in the faulty robots (sometimes over-trust) and reduce their situational awareness. The contributions of this study lie in providing insights into the importance of SA in future jobsites and the need for investigating effective strategies for better preparing future workers.more » « less
-
Collaborative robots, or cobots, represent a breakthrough technology designed for high-level (e.g., collaborative) interactions between workers and robots with capabilities for flexible deployment in industries such as manufacturing. Understanding how workers and companies use and integrate cobots is important to inform the future design of cobot systems and educational technologies that facilitate effective worker-cobot interaction. Yet, little is known about typical training for collaboration and the application of cobots in manufacturing. To close this gap, we interviewed nine experts in manufacturing about their experience with cobots. Our thematic analysis revealed that, contrary to the envisioned use, experts described most cobot applications as only low-level (e.g., pressing start/stop buttons) interactions with little flexible deployment, and experts felt traditional robotics skills were needed for collaborative and flexible interaction with cobots. We conclude with design recommendations for improved future robots, including programming and interface designs, and educational technologies to support collaborative use.more » « less
-
With the advance of human-robot collaboration (HRC), collaborative robots (cobots) have emerged as solutions to alleviate the manual tasks involved in electronic waste (e-waste) disassembly. This study employed surface electromyography (EMG) to investigate whether cobots can enhance muscle coordination. EMG-EMG coherence in both beta and gamma bands was calculated from 22 participants to quantify coordination between four muscle groups—biceps brachii (BB), brachioradialis (BR), upper trapezius (UT), and erector spinae (ES). Comparison results showed that after the introduction of the cobot, significant increases in left BR&BB, BR&UT, BR&ES, and BB&UT pairs, right BR&BB, BR&UT, and BB&ES pairs, and bilateral BR pair were observed. Notably, left BR&ES presented the most substantial increase at 18.88% and 26.39% in the beta and gamma bands, respectively ( p < .05). These findings suggest that cobots hold potential to enhance muscle coordination during e-waste disassembly, thereby shedding light on the construction of HRC-based e-waste disassembly systems.more » « less
-
Recent advances in construction automation increased the need for cooperation between workers and robots, where workers have to face both success and failure in human-robot collaborative work, ultimately affecting their trust in robots. This study simulated a worker-robot bricklaying collaborative task to examine the impacts of blame targets (responsibility attributions) on trust and trust transfer in multi-robots-human interaction. The findings showed that workers’ responsibility attributions to themselves or robots significantly affect their trust in the robot. Further, in a multi-robots-human interaction, observing one robot’s failure to complete the task will affect the trust in the other devices, aka., trust transfer.more » « less
An official website of the United States government

