skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FinA: Fairness of Adverse Effects in Decision-Making of Human-Cyber-Physical-System
Ensuring fairness in decision-making systems within Human-Cyber-Physical-Systems (HCPS) is a pressing concern, particularly when diverse individuals, each with varying behaviors and expectations, coexist within the same application space, influenced by a shared set of control actions in the system. The long-term adverse effects of these actions further pose the challenge, as historical experiences and interactions shape individual perceptions of fairness. This paper addresses the challenge of fairness from an equity perspective of adverse effects, taking into account the dynamic nature of human behavior and evolving preferences while recognizing the lasting impact of adverse effects. We formally introduce the concept of Fairness-in-Adverse-Effects (FinA) within the HCPS context. We put forth a comprehensive set of five formulations for FinA, encompassing both the instantaneous and long-term aspects of adverse effects. To empirically validate the effectiveness of our FinA approach, we conducted an evaluation within the domain of smart homes, a pertinent HCPS application. The outcomes of our evaluation demonstrate that the adoption of FinA significantly enhances the overall perception of fairness among individuals, yielding an average improvement of 66.7% when compared to the state-of-the-art method.  more » « less
Award ID(s):
2105084 2339266
PAR ID:
10537344
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-6927-4
Page Range / eLocation ID:
202 to 211
Subject(s) / Keyword(s):
human-cyber-physical-systems fairness decision-making adverse-effect
Format(s):
Medium: X
Location:
Hong Kong, Hong Kong
Sponsoring Org:
National Science Foundation
More Like this
  1. Achieving fairness in sequential decision making systems within Human-in-the-Loop (HITL) environments is a critical concern, especially when multiple humans with different behavior and expectations are affected by the same adaptation decisions in the system. This human variability factor adds more complexity since policies deemed fair at one point in time may become discriminatory over time due to variations in human preferences resulting from inter- and intra-human variability. This paper addresses the fairness problem from an equity lens, considering human behavior variability, and the changes in human preferences over time. We propose FAIRO, a novel algorithm for fairness-aware sequential decision making in HITL adaptation, which incorporates these notions into the decision-making process. In particular, FAIRO decomposes this complex fairness task into adaptive sub-tasks based on individual human preferences through leveraging the Options reinforcement learning framework. We design FAIRO to generalize to three types of HITL application setups that have the shared adaptation decision problem. Furthermore, we recognize that fairness-aware policies can sometimes conflict with the application’s utility. To address this challenge, we provide a fairness-utility tradeoff in FAIRO, allowing system designers to balance the objectives of fairness and utility based on specific application requirements. Extensive evaluations of FAIRO on the three HITL applications demonstrate its generalizability and effectiveness in promoting fairness while accounting for human variability. On average, FAIRO can improve fairness compared with other methods across all three applications by 35.36%. 
    more » « less
  2. We conduct a global comparison of the consumption of energy by human populations throughout the Holocene and statistically quantify coincident changes in the consumption of energy over space and time—an ecological phenomenon known as synchrony. When populations synchronize, adverse changes in ecosystems and social systems may cascade from society to society. Thus, to develop policies that favor the sustained use of resources, we must understand the processes that cause the synchrony of human populations. To date, it is not clear whether human societies display long-term synchrony or, if they do, the poten- tial causes. Our analysis begins to fill this knowledge gap by quantifying the long-term synchrony of human societies, and we hypothesize that the synchrony of human populations results from (i) the creation of social ties that couple populations over smaller scales and (ii) much larger scale, globally convergent tra- jectories of cultural evolution toward more energy-consuming political economies with higher carrying capacities. Our results suggest that the process of globalization is a natural consequence of evolutionary trajectories that increase the carrying capacities of human societies. 
    more » « less
  3. null (Ed.)
    Non-technical summary We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding of Earth's sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments. Technical summary A synthesis is made of ten fields within climate science where there have been significant advances since mid-2019, through an expert elicitation process with broad disciplinary scope. Findings include: (1) a better understanding of equilibrium climate sensitivity; (2) abrupt thaw as an accelerator of carbon release from permafrost; (3) changes to global and regional land carbon sinks; (4) impacts of climate change on water crises, including equity perspectives; (5) adverse effects on mental health from climate change; (6) immediate effects on climate of the COVID-19 pandemic and requirements for recovery packages to deliver on the Paris Agreement; (7) suggested long-term changes to governance and a social contract to address climate change, learning from the current pandemic, (8) updated positive cost–benefit ratio and new perspectives on the potential for green growth in the short- and long-term perspective; (9) urban electrification as a strategy to move towards low-carbon energy systems and (10) rights-based litigation as an increasingly important method to address climate change, with recent clarifications on the legal standing and representation of future generations. Social media summary Stronger permafrost thaw, COVID-19 effects and growing mental health impacts among highlights of latest climate science. 
    more » « less
  4. In this paper, we propose a framework for achieving long-term fair sequential decision making. By conducting both the hard and soft interventions, we propose to take path-specific effects on the time-lagged causal graph as a quantitative tool for measuring long-term fairness. The problem of fair sequential decision making is then formulated as a constrained optimization problem with the utility as the objective and the long-term and short-term fairness as constraints. We show that such an optimization problem can be converted to a performative risk optimization. Finally, repeated risk minimization (RRM) is used for model training, and the convergence of RRM is theoretically analyzed. The empirical evaluation shows the effectiveness of the proposed algorithm on synthetic and semi-synthetic temporal datasets. 
    more » « less
  5. Many models of learning in teams assume that team members can share solutions or learn concurrently. However, these assumptions break down in multidisciplinary teams where team members often complete distinct, interrelated pieces of larger tasks. Such contexts make it difficult for individuals to separate the performance effects of their own actions from the actions of interacting neighbors. In this work, we show that individuals can overcome this challenge by learning from network neighbors through mediating artifacts (like collective performance assessments). When neighbors’ actions influence collective outcomes, teams with different networks perform relatively similarly to one another. However, varying a team’s network can affect performance on tasks that weight individuals’ contributions by network properties. Consequently, when individuals innovate (through “exploring” searches), dense networks hurt performance slightly by increasing uncertainty. In contrast, dense networks moderately help performance when individuals refine their work (through “exploiting” searches) by efficiently finding local optima. We also find that decentralization improves team performance across a battery of 34 tasks. Our results offer design principles for multidisciplinary teams within which other forms of learning prove more difficult. 
    more » « less