skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Networked Nanoparticle Arrays for Autonomous Computing: (Invited Paper)
We have pursued the use of polymer-networked engineered nanoparticles as a candidate material capable of retaining information or perhaps even processing information in some prescribed way. Such operations would be of use for the neuromorphic engineering of materials that can compute intrinsically—that is, that they are in no way subject to a von Neumann architecture—and they have been identified as autonomous computing materials. Using trajectories integrated to much longer time steps than previously observed, we can now confirm that the response of the polymer-networked engineered nanoparticle arrays are highly sensitive to external perturbations. That is, the specific internal connections around given nanopar- ticles can be assigned to states useful for information processing, and the variations in their physical properties can result in specific responses allowing the state to be read. Moreover, their resulting equilibrium properties also depend on such external driving, and hence are subject to control which is a minimal requirement for these materials to be candidates for autonomous computing. We also demonstrate that using long polymer chains can help regulate the networks structures by increasing the 1st nearest links and reducing other links.  more » « less
Award ID(s):
2102455
PAR ID:
10537495
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-8624-0
Page Range / eLocation ID:
409 to 413
Subject(s) / Keyword(s):
engineered nanoparticles, materials design, coarse-grained dynamics, computing primitives
Format(s):
Medium: X
Location:
Gijon, Spain
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymer-networked nanoparticles are the basis for advanced materials useful wearable electron- ics, drug delivery, autonomous computing and other applications. To characterize and predict the physics and underlying mechanisms of the network connections in 2D and 3D engineered nanopar- ticle (ENP) arrays, we developed an analogous Potts model of 3-state sites. Together with dissipa- tive particle dynamics (DPD) simulations, we found that the network structures in polymer-linked nanoparticle assemblies are generally dominated by the number of nearest neighbors and not the topology of the lattice. When the E-field regulates the network connections, the links along the E-field direction always dominate the overall network structure. 
    more » « less
  2. Covalently networked polymers offer desirable non-crystallinity and mechanical strength for solid polymer electrolytes (SPEs), but the chemically active cross-links involved in their construction could deteriorate the compatibility with high-energy cathode materials that are electrophilic and/or in the charged state. Herein we reveal a strong dependence of cyclability of such cathodes on the reactivity of covalently networked SPEs and demonstrate a polymer design that renders these SPEs chemically inert. We designed and synthesized two hybrid networks, both with polyethylene oxide as the cation conducting component and polyhedral oligomeric silsesquioxane as the branch point, but respectively use alkylamino and chemically inert triazole groups as cross-links. All-solid-state cells using the alkylamino-containing SPE underwent rapid degradation while cells using triazole SPEs showed stable cycling. 
    more » « less
  3. Abstract Although classical thermal machines power industries and modern living, quantum thermal engines have yet to prove their utility. Here, we demonstrate a useful quantum absorption refrigerator formed from superconducting circuits. We use it to cool a transmon qubit to a temperature lower than that achievable with any one available bath, thereby resetting the qubit to an initial state suitable for quantum computing. The process is driven by a thermal gradient and is autonomous, requiring no external feedback. The refrigerator exploits an engineered three-body interaction between the target qubit and two auxiliary qudits. Each auxiliary qudit is coupled to a physical heat bath, realized with a microwave waveguide populated with synthesized quasithermal radiation. If the target qubit is initially fully excited, its effective temperature reaches a steady-state level of approximately 22 mK, lower than what can be achieved by existing state-of-the-art reset protocols. Our results demonstrate that superconducting circuits with propagating thermal fields can be used to experimentally explore quantum thermodynamics and apply it to quantum information-processing tasks. 
    more » « less
  4. Abstract In recent years, wave-based analog computing has been at the center of attention for providing ultra-fast and power-efficient signal processing enabled by wave propagation through artificially engineered structures. Building on these structures, various proposals have been put forward for performing computations with waves. Most of these proposals have been aimed at linear operations, such as vector-matrix multiplications. The weak and hardly controllable nonlinear response of electromagnetic materials imposes challenges in the design of wave-based structures for performing nonlinear operations. In the present work, first, by using the method of inverse design we propose a three-port device, which consists of a combination of linear and Kerr nonlinear materials, exhibiting the desired power-dependent transmission properties. Then, combining a proper arrangement of such devices with a collection of Mach–Zehnder interferometers (MZIs), we propose a reconfigurable nonlinear optical architecture capable of implementing a variety of nonlinear functions of the input signal. The proposed device may pave the way for wave-based reconfigurable nonlinear signal processing that can be combined with linear networks for full-fledged wave-based analog computing. 
    more » « less
  5. In this Account, we describe our recent work in developing polymer brush coatings for nanoparticles, which we use to modulate particle behavior on demand, select specific nanoscopic architectures to form, and bolster traditional bulk polymers to form stronger materials by design. Distinguished by the polymer type and capabilities, three classes of nanoparticles are discussed here: nanocomposite tectons (NCTs), which use synthetic polymers end-functionalized with supramolecular recognition groups capable of directing their assembly; programmable atom equivalents (PAEs) containing brushes of synthetic DNA that employ Watson–Crick base pairing to encode particle binding interactions; and cross-linkable nanoparticles (XNPs) that can both stabilize nanoparticles in solution and polymer matrices and subsequently form multivalent cross-links to strengthen polymer composites. We describe the formation of these brushes through “grafting-from” and “grafting-to” strategies and illustrate aspects that are important for future advancement. We also examine the new capabilities brushes provide, looking closely at dynamic polymer processes that provide control over the assembly state of particles. Finally, we provide a brief overview of the technological applications of nanoparticles with polymer brushes, focusing on the integration of nanoparticles into traditional materials and the processing of nanoparticles into bulk solids. 
    more » « less