Abstract Controlled quantum machines have matured significantly. A natural next step is to increasingly grant them autonomy, freeing them from time-dependent external control. For example, autonomy could pare down the classical control wires that heat and decohere quantum circuits; and an autonomous quantum refrigerator recently reset a superconducting qubit to near its ground state, as is necessary before a computation. Which fundamental conditions are necessary for realizing useful autonomous quantum machines? Inspired by recent quantum thermodynamics and chemistry, we posit conditions analogous to DiVincenzo’s criteria for quantum computing. Furthermore, we illustrate the criteria with multiple autonomous quantum machines (refrigerators, circuits, clocks, etc) and multiple candidate platforms (neutral atoms, molecules, superconducting qubits, etc). Our criteria are intended to foment and guide the development of useful autonomous quantum machines.
more »
« less
This content will become publicly available on February 1, 2026
Thermally driven quantum refrigerator autonomously resets a superconducting qubit
Abstract Although classical thermal machines power industries and modern living, quantum thermal engines have yet to prove their utility. Here, we demonstrate a useful quantum absorption refrigerator formed from superconducting circuits. We use it to cool a transmon qubit to a temperature lower than that achievable with any one available bath, thereby resetting the qubit to an initial state suitable for quantum computing. The process is driven by a thermal gradient and is autonomous, requiring no external feedback. The refrigerator exploits an engineered three-body interaction between the target qubit and two auxiliary qudits. Each auxiliary qudit is coupled to a physical heat bath, realized with a microwave waveguide populated with synthesized quasithermal radiation. If the target qubit is initially fully excited, its effective temperature reaches a steady-state level of approximately 22 mK, lower than what can be achieved by existing state-of-the-art reset protocols. Our results demonstrate that superconducting circuits with propagating thermal fields can be used to experimentally explore quantum thermodynamics and apply it to quantum information-processing tasks.
more »
« less
- Award ID(s):
- 2120757
- PAR ID:
- 10592932
- Publisher / Repository:
- Nature Physics
- Date Published:
- Journal Name:
- Nature Physics
- Volume:
- 21
- Issue:
- 2
- ISSN:
- 1745-2473
- Page Range / eLocation ID:
- 318 to 323
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Phonons, the ubiquitous quanta of vibrational energy, play a vital role in the performance of quantum technologies. Conversely, unintended coupling to phonons degrades qubit performance and can lead to correlated errors in superconducting qubit systems. Regardless of whether phonons play an enabling or deleterious role, they do not typically admit control over their spectral properties, nor the possibility of engineering their dissipation to be used as a resource. Here we show that coupling a superconducting qubit to a bath of piezoelectric surface acoustic wave phonons enables a novel platform for investigating open quantum systems. By shaping the loss spectrum of the qubit via the bath of lossy surface phonons, we demonstrate preparation and dynamical stabilization of superposition states through the combined effects of drive and dissipation. These experiments highlight the versatility of engineered phononic dissipation and advance the understanding of mechanical losses in superconducting qubit systems.more » « less
-
The performance of superconducting quantum circuits is primarily limited by dielectric loss due to interactions with two-level systems (TLSs). State-of-the-art circuits with engineered material interfaces are approaching a limit where dielectric loss from bulk substrates plays an important role. However, a microscopic understanding of dielectric loss in crystalline substrates is still lacking. In this work, we show that boron acceptors in silicon constitute a TLS bath that leads to an energy dissipation channel for superconducting circuits. We discuss how the electronic structure of boron acceptors leads to an effective TLS response in silicon. We sweep the boron concentration in silicon and demonstrate the bulk dielectric loss limit from boron acceptors. We show that boron-induced dielectric loss can be reduced in a magnetic field due to the spin-orbit structure of boron. This work provides the first detailed microscopic description of a TLS bath for superconducting circuits and demonstrates the need for ultrahigh-purity substrates for next-generation superconducting quantum processors. Published by the American Physical Society2024more » « less
-
Scalability of today’s superconducting quantum computers is limited due to the huge costs of generating/routing microwave control pulses per qubit from room temperature. One active research area in both industry and academia is to push the classical controllers to the dilution refrigerator in order to increase the scalability of quantum computers. Superconducting Single Flux Quantum (SFQ) is a classical logic technology with low power consumption and ultra-high speed, and thus is a promising candidate for in-fridge classical controllers with maximized scalability. Prior work has demonstrated high-fidelity SFQ-based single-qubit gates. However, little research has been done on SFQ-based multi-qubit gates, which are necessary to realize SFQ-based universal quantum computing.In this paper, we present the first thorough analysis of SFQ-based two-qubit gates. Our observations show that SFQ-based two-qubit gates tend to have high leakage to qubit non-computational subspace, which presents severe design challenges. We show that despite these challenges, we can realize gates with high fidelity by carefully designing optimal control methods and qubit architectures. We develop optimal control methods that suppress leakage, and also investigate various qubit architectures that reduce the leakage. After carefully engineering our SFQ-friendly quantum system, we show that it can achieve similar gate fidelity and gate time to microwave-based quantum systems. The promising results of this paper show that (1) SFQ-based universal quantum computation is both feasible and effective; and (2) SFQ is a promising approach in designing classical controller for quantum machines because it can increase the scalability while preserving gate fidelity and performance.more » « less
-
The speed of elementary quantum gates, particularly two-qubit entangling gates, ultimately sets the limit on the speed at which quantum circuits can operate. In this work, we demonstrate experimentally two-qubit entangling gates at nearly the fastest possible speed allowed by the physical interaction strength between two superconducting transmon qubits. We achieve this quantum speed limit by implementing experimental gates designed using a machine learning inspired optimal control method. Importantly, our method only requires the single-qubit drive strength to be moderately larger than the interaction strength to achieve an arbitrary entangling gate close to its analytical speed limit with high fidelity. Thus, the method is applicable to a variety of platforms including those with comparable single-qubit and two-qubit gate speeds, or those with always-on interactions.more » « less
An official website of the United States government
