skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep learning estimation of northern hemisphere soil freeze-thaw dynamics using satellite multi-frequency microwave brightness temperature observations
Satellite microwave sensors are well suited for monitoring landscape freeze-thaw (FT) transitions owing to the strong brightness temperature (TB) or backscatter response to changes in liquid water abundance between predominantly frozen and thawed conditions. The FT retrieval is also a sensitive climate indicator with strong biophysical importance. However, retrieval algorithms can have difficulty distinguishing the FT status of soils from that of overlying features such as snow and vegetation, while variable land conditions can also degrade performance. Here, we applied a deep learning model using a multilayer convolutional neural network driven by AMSR2 and SMAP TB records, and trained on surface (~0–5 cm depth) soil temperature FT observations. Soil FT states were classified for the local morning (6 a.m.) and evening (6 p.m.) conditions corresponding to SMAP descending and ascending orbital overpasses, mapped to a 9 km polar grid spanning a five-year (2016–2020) record and Northern Hemisphere domain. Continuous variable estimates of the probability of frozen or thawed conditions were derived using a model cost function optimized against FT observational training data. Model results derived using combined multi-frequency (1.4, 18.7, 36.5 GHz) TBs produced the highest soil FT accuracy over other models derived using only single sensor or single frequency TB inputs. Moreover, SMAP L-band (1.4 GHz) TBs provided enhanced soil FT information and performance gain over model results derived using only AMSR2 TB inputs. The resulting soil FT classification showed favorable and consistent performance against soil FT observations from ERA5 reanalysis (mean percent accuracy, MPA: 92.7%) andin situweather stations (MPA: 91.0%). The soil FT accuracy was generally consistent between morning and afternoon predictions and across different land covers and seasons. The model also showed better FT accuracy than ERA5 against regional weather station measurements (91.0% vs. 86.1% MPA). However, model confidence was lower in complex terrain where FT spatial heterogeneity was likely beneath the effective model grain size. Our results provide a high level of precision in mapping soil FT dynamics to improve understanding of complex seasonal transitions and their influence on ecological processes and climate feedbacks, with the potential to inform Earth system model predictions.  more » « less
Award ID(s):
2322664
PAR ID:
10537609
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
NSF-PAR
Date Published:
Journal Name:
Frontiers in Big Data
Volume:
6
ISSN:
2624-909X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Quantifying the total liquid water amounts (LWAs) in the Greenland ice sheet (GrIS) is critical for understanding GrIS firn processes, mass balance, and global sea level rise. Although satellite microwave observations are very sensitive to ice sheet melt and thus can provide a way of monitoring the ice sheet melt globally, estimating total LWA, especially the subsurface LWA, remains a challenge. Here, we present a microwave retrieval of LWA over Greenland using enhanced-resolution L-band brightness temperature (TB) data products from the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite for the 2015–2023 period. L-band signals receive emission contributions deep in the ice sheet and are sensitive to the liquid water content (LWC) in the firn column. Therefore, they can estimate the surface-to-subsurface LWA, unlike higher-frequency signals (e.g., 18 and 37 GHz bands), which are limited to the top few centimeters of the surface snow during the melt. We used vertically polarized TB (V-pol TB) with empirically derived thresholds to detect liquid water and identify distinct ice sheet zones. A forward model based on radiative transfer (RT) in the ice sheet was used to simulate TB. The simulated TB was then used in an inversion algorithm to estimate LWA. Finally, the retrievals were compared with the LWA obtained from two sources. The first source was a locally calibrated ice sheet energy and mass balance (EMB) model, and the second source was the Glacier Energy and Mass Balance (GEMB) model within NASA's Ice-sheet and Sea-level System Model (ISSM). Both models were forced by in situ measurements from six automatic weather stations (AWSs) of the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) and the Greenland Climate Network (GC-Net) located in the percolation zone of the GrIS. The retrievals show generally good agreement with both the references, demonstrating the potential for advancing our understanding of ice sheet physical processes to better project Greenland's contribution to the global sea level rise in response to the warming climate. 
    more » « less
  2. Nowcasts, or near-real-time (NRT) forecasts, of soil moisture based on the Soil Moisture Active and Passive (SMAP) mission could provide substantial value for a range of applications including hazards monitoring and agricultural planning. To provide such a NRT forecast with high fidelity, we enhanced a time series deep learning architecture, long short-term memory (LSTM), with a novel data integration (DI) kernel to assimilate the most recent SMAP observations as soon as they become available. The kernel is adaptive in that it can accommodate irregular observational schedules. Testing over the CONUS, this NRT forecast product showcases predictions with unprecedented accuracy when evaluated against subsequent SMAP retrievals. It showed smaller error than NRT forecasts reported in the literature, especially at longer forecast latency. The comparative advantage was due to LSTM’s structural improvements, as well as its ability to utilize more input variables and more training data. The DI-LSTM was compared to the original LSTM model that runs without data integration, referred to as the projection model here. We found that the DI procedure removed the autocorrelated effects of forcing errors and errors due to processes not represented in the inputs, for example, irrigation and floodplain/lake inundation, as well as mismatches due to unseen forcing conditions. The effects of this purely data-driven DI kernel are discussed for the first time in the geosciences. Furthermore, this work presents an upper-bound estimate for the random component of the SMAP retrieval error. 
    more » « less
  3. Abstract The quantitative estimation of precipitation from orbiting passive microwave imagers has been performed for more than 30 years. The development of retrieval methods consists of establishing physical or statistical relationships between the brightness temperatures (TBs) measured at frequencies between 5 and 200 GHz and precipitation. Until now, these relationships have essentially been established at the “pixel” level, associating the average precipitation rate inside a predefined area (the pixel) to the collocated multispectral radiometric measurement. This approach considers each pixel as an independent realization of a process and ignores the fact that precipitation is a dynamic variable with rich multiscale spatial and temporal organization. Here we propose to look beyond the pixel values of the TBs and show that useful information for precipitation retrieval can be derived from the variations of the observed TBs in a spatial neighborhood around the pixel of interest. We also show that considering neighboring information allows us to better handle the complex observation geometry of conical-scanning microwave imagers, involving frequency-dependent beamwidths, overlapping fields of view, and large Earth incidence angles. Using spatial convolution filters, we compute “nonlocal” radiometric parameters sensitive to spatial patterns and scale-dependent structures of the TB fields, which are the “geometric signatures” of specific precipitation structures such as convective cells. We demonstrate that using nonlocal radiometric parameters to enrich the spectral information associated to each pixel allows for reduced retrieval uncertainty (reduction of 6%–11% of the mean absolute retrieval error) in a simple k-nearest neighbors retrieval scheme. 
    more » « less
  4. Research in different agricultural sectors, including in crop loss estimation during flood and yield estimation, substantially rely on inundation information. Spaceborne remote sensing has widely been used in the mapping and monitoring of floods. However, the inability of optical remote sensing to cloud penetration and the scarcity of fine temporal resolution SAR data hinder the application of flood mapping in many cases. Soil Moisture Active Passive (SMAP) level 4 products, which are model-driven soil moisture data derived from SMAP observations and are available at 3-h intervals, can offer an intermediate but effective solution. This study maps flood progress in croplands by incorporating SMAP surface soil moisture, soil physical properties, and national floodplain information. Soil moisture above the effective soil porosity is a direct indication of soil saturation. Soil moisture also increases considerably during a flood event. Therefore, this approach took into account three conditions to map the flooded pixels: a minimum of 0.05 m3m−3 increment in soil moisture from pre-flood to post-flood condition, soil moisture above the effective soil porosity, and the holding of saturation condition for the 72 consecutive hours. Results indicated that the SMAP-derived maps were able to successfully map most of the flooded areas in the reference maps in the majority of the cases, though with some degree of overestimation (due to the coarse spatial resolution of SMAP). Finally, the inundated croplands are extracted from saturated areas by Spatial Hazard Zone areas (SHFA) of Federal Emergency Management Agency (FEMA) and cropland data layer (CDL). The flood maps extracted from SMAP data are validated with FEMA-declared affected counties as well as with flood maps from other sources. 
    more » « less
  5. Crop growth depends on the root-zone soil moisture (RZSM) (~top 1m). Accurate estimation of RZSM is vital to optimize irrigation management for saving water and energy while sustaining crop yield. The High-Resolution Land Assimilation System (HRLDAS) from NCAR can generate RZSM at field scales for irrigation management. The soil moisture data from various agriculture sites in the AmeriFlux network, U.S. Climate Reference Network (USCRN), and Soil Climate Analysis Network (SCAN) are used to verify the soil moisture products generated by HRLDAS. Although the HRLDAS products is not location specific and could be applied nationwide, this study will focus on Nebraska for evaluation, validation, and further calibration. We also compared NASA’s SMAP surface soil moisture products to HRLDAS surface layer soil moisture. Since the accuracy of the SMAP product is known, this comparison directly validates the HRLDAS surface soil moisture product and indirectly validate its RZSM products. Results from these two validation methods show a good accuracy of HRLDAS soil moisture products. The conspicuous differences between HRLDAS and SMAP products indicate that HRLDAS omits the irrigation activities as its simulation is based on weather variables and energy balance. It’s hard for HRLDAS to consider and include the irrigation actions in its results, while as SMAP products remotely sense the soil moisture as it is, the changes caused by irrigation are clearly reflected. Therefore, a simple calibration is applied to the HRLDAS products by including irrigation amount as its variables. 
    more » « less