skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing impact-resistant bio-inspired low-porosity structures using neural networks
Biological structural designs in nature like hoof walls can be used as inspiration for generating structures with excellent mechanical properties. A common theme in these designs is the small percent porosity. Under dynamic transverse compression, we investigated the structure-property relations in low porosity structures. A diverse design space was created using polygonal tubules with different numbers of rows and columns. The volume fraction and the orientation angle of the tubules were also varied. The finite element method was used with a rate-dependent elastoplastic material model to generate the stress-strain curves in plane strain conditions.  more » « less
Award ID(s):
1926353
PAR ID:
10537632
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Materials Research and Technology
Volume:
27
Issue:
C
ISSN:
2238-7854
Page Range / eLocation ID:
767 to 779
Subject(s) / Keyword(s):
Bio-inspired Structure-property relations Neural networks Specific energy absorption
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The equine hoof wall has a complex, hierarchical structure that can inspire designs of impact-resistant materials. In this study, we utilized micro-computed tomography (micro-CT) and serial block-face scanning electron microscopy (SBF-SEM) to image the microstructure and nanostructure of the hoof wall. We quantified the morphology of tubular medullary cavities by measuring equivalent diameter, surface area, volume, and sphericity. Highresolution micro-CT revealed that tubules are partially or fully filled with tissue near the exterior surface and become progressively empty towards the inner part of the hoof wall. Thin bridges were detected within the medullary cavity, starting in the middle section of the hoof wall and increasing in density and thickness towards the inner part. Porosity was measured using three-dimensional (3D) micro-CT, two-dimensional (2D) micro-CT, and a helium pycnometer. The highest porosity was obtained using the helium pycnometer (8.07%), followed by 3D (3.47%) and 2D (2.98%) micro-CT. SBF-SEM captured the 3D structure of the hoof wall at the nanoscale, showing that the tubule wall is not solid, but has nano-sized pores, which explains the higher porosity obtained using the helium pycnometer. The results of this investigation provide morphological information on the hoof wall for the future development of hoof-inspired materials and offer a novel perspective on how various measurement methods can influence the quantification of porosity. 
    more » « less
  2. The equine hoof wall has a complex, hierarchical structure that can inspire designs of impactresistant materials. In this study, we utilized micro-computed tomography (µ-CT) and serial blockface scanning electron microscopy (SBF-SEM) to image the microstructure and nanostructure of the hoof wall. We quantified the morphology of tubular medullary cavities by measuring equivalent diameter, surface area, volume, and sphericity. High-resolution µ-CT revealed that tubules are partially or fully filled with tissue near the exterior surface and become progressively empty towards the inner part of the hoof wall. Thin bridges were detected within the medullary cavity, starting in the middle section of the hoof wall and increasing in density and thickness towards the inner part. Porosity was measured using three-dimensional (3D) µ-CT, twodimensional (2D) µ-CT, and a helium pycnometer, with the highest porosity obtained using the helium pycnometer (8.07%), followed by 3D (3.47%) and 2D (2.98%) µ-CT. SBF-SEM captured the 3D structure of the hoof wall at the nanoscale, showing that the tubule wall is not solid, but has nano-sized pores, which explains the higher porosity obtained using the helium pycnometer. The results of this investigation provide morphological information on the hoof wall for the future development of hoof-inspired materials and offer a novel perspective on how various measurement methods can influence the quantification of porosity. 
    more » « less
  3. Additive manufacturing has provided the ability to manufacture complex structures using a wide variety of materials and geometries. Structures such as triply periodic minimal surface (TPMS) lattices have been incorporated into products across many fields due to their unique combinations of mechanical, geometric, and physical properties. Yet, the near limitless possibility of combining geometry and material into these lattices leaves much to be discovered. This article provides a dataset of experimentally gathered tensile stress-strain curves and measured porosity values for 389 unique gyroid lattice structures manufactured using vat photopolymerization 3D printing. The lattice samples were printed from one of twenty different photopolymer materials available from either Formlabs, LOCTITE AM, or ETEC that range from strong and brittle to elastic and ductile and were printed on commercially available 3D printers, specifically the Formlabs Form2, Prusa SL1, and ETEC Envision One cDLM Mechanical. The stress-strain curves were recorded with an MTS Criterion C43.504 mechanical testing apparatus and following ASTM standards, and the void fraction or “porosity” of each lattice was measured using a calibrated scale. This data serves as a valuable resource for use in the development of novel printing materials and lattice geometries and provides insight into the influence of photopolymer material properties on the printability, geometric accuracy, and mechanical performance of 3D printed lattice structures. The data described in this article was used to train a machine learning model capable of predicting mechanical properties of 3D printed gyroid lattices based on the base mechanical properties of the printing material and porosity of the lattice in the research article [1]. 
    more » « less
  4. Background Porosity and other defects resultant by additive manufacturing processes are well-known to affect mechanical properties. However, there remains limited understanding regarding how the internal defect structure influences the evolution of the local strain field, as experimental investigations have not presented direct measurements of the evolving internal strain field in the presence of defects. Objective Interrupted in-situ tensile tests in a lab-based X-ray computed tomography machine were used to investigate the evolution of the strain field around internal defects. The evolution of the internal strain field facilitated examination of the role of specific defects in the macroscopic deformation of additively manufactured tensile coupons. Methods Samples were produced in 316L stainless steel by laser powder bed fusion. An in situ loading device was utilized to subject the samples to tensile failure within a tomographic scanning environment. Digital volume correlation was utilized to directly determine local strain levels within the additively manufactured components in the vicinity of porosity defects. Results Effects of porosity on strain localization and eventual failure of the samples were evaluated. Characteristics of the porosity distribution, including presence of porosity at the surface or near-surface of components, as well as the proximity of pores to each other were found to influence the evolution of failure. Early onset of failure was found to be associated with the availability of neighboring porosity that allowed for rapid progression of the fracture path. Conclusions The direct measurements of strain field evolution in the present study established understanding regarding how internal defect structure characteristics influence the evolution of the local strain field for additively manufactured components. This high fidelity characterization and the associated phenomenological observations have bearing for supporting validation of numerical modeling frameworks for describing failure in these materials. 
    more » « less
  5. Self-assembled lipid tubules are unique supramolecular structures in cell functions. Lipid tubules that are engineered in vitro are of great interest for technological applications ranging from the templated synthesis of nanomaterials to drug delivery. Herein, we report a study to create long lipid tubules from a mono-unsaturated lipid, 1-stearoyl-2-oleoyl- sn-glycero -3-phosphocholine (SOPC), due to the effect of calcium ions. We found that calcium ions at mM concentrations promote the self-assembly of SOPC lipids into inter-connected hollow lipid tubes that are μm thick and as long as a few millimeters. Higher calcium concentration leads to an increase in the numbers of lipid tubules formed, but has little effect on tubule diameter. Calcium ions also stabilize lipid tubules, which break up upon the removal of ions. We showed that the lipid tubule-promoting effect is general for divalent ions. We were able to vary the morphology of lipid tubules from thin tube to “strings of pearls” structures or increase the tubule thickness by mixing SOPC with other lipids of different spontaneous curvature effects. Our results reveal that the divalent charges of calcium ions and the asymmetric mono-unsaturated structure of SOPC acyl chains act in combination to cause the formation of lipid tubules. 
    more » « less