skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Terahertz Metasurfaces Exploiting the Phase Transition of Vanadium Dioxide
Artificially designed modulators that enable a wealth of freedom in manipulating the terahertz (THz) waves at will are an essential component in THz sources and their widespread applications. Dynamically controlled metasurfaces, being multifunctional, ultrafast, integrable, broadband, high contrasting, and scalable on the operating wavelength, are critical in developing state-of-the-art THz modulators. Recently, external stimuli-triggered THz metasurfaces integrated with functional media have been extensively explored. The vanadium dioxide (VO2)-based hybrid metasurfaces, as a unique path toward active meta-devices, feature an insulator–metal phase transition under the excitation of heat, electricity, and light, etc. During the phase transition, the optical and electrical properties of the VO2 film undergo a massive modification with either a boosted or dropped conductivity by more than four orders of magnitude. Being benefited from the phase transition effect, the electromagnetic response of the VO2-based metasufaces can be actively controlled by applying external excitation. In this review, we present recent advances in dynamically controlled THz metasurfaces exploiting the VO2 phase transition categorized according to the external stimuli. THz time-domain spectroscopy is introduced as an indispensable platform in the studies of functional VO2 films. In each type of external excitation, four design strategies are employed to realize external stimuli-triggered VO2-based THz metasurfaces, including switching the transreflective operation mode, controlling the dielectric environment of metallic microstructures, tailoring the equivalent resonant microstructures, and modifying the electromagnetic properties of the VO2 unit cells. The microstructures’ design and electromagnetic responses of the resulting active metasurfaces have been systematically demonstrated, with a particular focus on the critical role of the VO2 films in the dynamic modulation processes.  more » « less
Award ID(s):
2114103
PAR ID:
10538221
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Materials
Volume:
16
Issue:
22
ISSN:
1996-1944
Page Range / eLocation ID:
7106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plasmonic metasurfaces with adjustable optical responses can be achieved through phase change materials (PCMs) with high optical contrast. However, the on–off behavior of the phase change process results in the binary response of photonic devices, limiting the applications to the two-stage modulation. In this work, we propose a reconfigurable metasurface emitter based on a gold nanorod array on a VO2 thin film for achieving continuously tunable narrowband thermal emission. The electrode line connecting the center of each nanorod not only enables emission excitation electrically but also activates the phase transition of VO2 beneath the array layer due to Joule heating. The change in the dielectric environment due to the VO2 phase transition results in the modulation of emissivity from the plasmonic metasurfaces. The device performances regarding critical geometrical parameters are analyzed based on a fully coupled electro-thermo-optical finite element model. This new metasurface structure extends the binary nature of PCM based modulations to continuous reconfigurability and provides new possibilities toward smart metasurface emitters, reflectors, and other nanophotonic devices. 
    more » « less
  2. null (Ed.)
    Abstract Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at approximately 68 °C, with associated sharp changes in its physical (e.g., optical, electrical, and mechanical) properties. This behavior makes VO2 films of interest in many potential applications, including memory devices, switches, sensors, and optical modulators. For ON/OFF like digital applications, an abrupt switching behavior is ideal. However, to continuously change VO2 metal/insulator phase ratio for analog-like operation, the intrinsic hysteresis characteristic of VO2 MIT renders the phase control becoming a formidable challenge. This paper considers the problem of controlling and tracking desired optical transmittance via continuous phase ratio change. The problem becomes worse while considering the differences of individual thin-film samples and the hysteresis associated with the phase change within a narrow temperature range. This paper reports a robust feedback controller using an optical transmittance measurement and based on an uncertainty and disturbance estimator (UDE) architecture. The proposed controller is capable of mitigating the adverse effect of hysteresis, while also compensating for various uncertainties. The effectiveness of the proposed methodology is demonstrated with experimental validation. 
    more » « less
  3. Abstract Excitation of coherent high-frequency magnons (quanta of spin waves) is critical to the development of high-speed magnonic devices. Here we computationally demonstrate the excitation of coherent sub-terahertz (THz) magnons in ferromagnetic (FM) and antiferromagnetic (AFM) thin films by a photoinduced picosecond acoustic pulse. Analytical calculations are also performed to reveal the magnon excitation mechanism. Through spin pumping and spin-charge conversion, these magnons can inject sub-THz charge current into an adjacent heavy-metal film which in turn emits electromagnetic (EM) waves. Using a dynamical phase-field model that considers the coupled dynamics of acoustic waves, spin waves, and EM waves, we show that the emitted EM wave retains the spectral information of all the sub-THz magnon modes and has a sufficiently large amplitude for near-field detection. These predictions indicate that the excitation and detection of sub-THz magnons can be realized in rationally designed FM or AFM thin-film heterostructures via ultrafast optical-pump THz-emission-probe spectroscopy. 
    more » « less
  4. Abstract Materials with tunable infrared refractive index changes have enabled active metasurfaces for novel control of optical circuits, thermal radiation, and more. Ion‐gel‐gated epitaxial films of the perovskite cobaltite La1−xSrxCoO3−δ(LSCO) with 0.00 ≤x≤ 0.70 offer a new route to significant, voltage‐tuned, nonvolatile refractive index modulation for infrared active metasurfaces, shown here through Kramers–Kronig‐consistent dispersion models, structural and electronic transport characterization, and electromagnetic simulations before and after electrochemical reduction. As‐grown perovskite films are high‐index insulators forx< 0.18 but lossy metals forx> 0.18, due to a percolation insulator‐metal transition. Positive‐voltage gating of LSCO transistors withx> 0.18 reveals a metal‐insulator transition from the metallic perovskite phase to a high‐index (n> 2.5), low‐loss insulating phase, accompanied by a perovskite to oxygen‐vacancy‐ordered brownmillerite transformation at highx. Atx< 0.18, despite nominally insulating character, the LSCO films undergo remarkable refractive index changes to another lower‐index, lower‐loss insulating perovskite state with Δn >0.6. In simulations of plasmonic metasurfaces, these metal‐insulator and insulator‐insulator transitions support significant, varied mid‐infrared reflectance modulation, thus framing electrochemically gated LSCO as a diverse library of room‐temperature phase‐change materials for applications including dynamic thermal imaging, camouflage, and optical memories. 
    more » « less
  5. Abstract Terahertz waves spanning over the 0.1 to 10 THz region of the electromagnetic spectrum have attracted significant attention owing to a variety of potential applications such as short‐range high‐speed data transmission, noninvasive screening and detection, materials characterization, spectroscopy, etc. This has resulted in massive strides in the development of essential system components such as broadband terahertz sources, detector arrays with high responsivity, as well as modulators. In parallel to this, spurred by the isolation of graphene in 2004, a tremendous interest in 2D systems has led to the rapid exploration and development of a library of atomically thin materials. These can exhibit a myriad of electrical and optical functionalities stemming from semiconducting, insulating, semi‐metallic, or superconducting behavior. In this context, since the early 2010s, 2D materials have been actively explored for active control of terahertz electromagnetic radiation. This paper aims to provide a concise overview of the pioneering efforts as well as the latest progress in these two overlapping research areas. In particular, the discussion is focused on the application of graphene and transition metal dichalcogenides in optically and electrically actuated terahertz amplitude and phase modulators. Furthermore, it provides an outlook on the technological prospects and challenges in these devices. 
    more » « less