skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Triple-Band, High DC-to-RF Efficiency, Multicore VCO With a Dual-Path Inductor and Mode-Switching Capacitor
This article introduces an innovative four-port dual-path inductor designed to deliver two distinct inductance values to the resonator of a voltage-controlled oscillator (VCO). The switching between the inductor’s two excitation modes, even and odd, is determined by the differential excitation’s input polarity, eliminating the need for a series switch. Thus, the inductor has a high-quality factor ( Q ) in both modes. The inductances in these modes can be independently set based on desired frequencies. This inductance change achieves coarse frequency tuning, while fine-tuning is realized by a conventional 2-bit capacitor bank with a small-size varactor. This inductor is well suited for designing multiband VCOs aimed at widely spaced operation frequency bands. Apart from the inductance change, a particular case of mode-switching capacitor is employed to extend to another frequency band in between the low and middle bands, achieving triple-band oscillation. As a result, this article presents two VCOs designed using the proposed inductor: one in class-D biasing in a 65-nm CMOS process and another with class-B biasing in a 180-nm BiCMOS process. Both VCOs successfully oscillate across three distinct frequency bands, centered at 19, 28, and 36 GHz, while maintaining outstanding phase noise and minimal power consumption. Measurement results show good match with simulation, resulting in a peak figure of merit (FoM) of 185.7 dBc/Hz at 18.5 GHz, and occupy 0.088- mm2 (250 × 350 μ m) area in both processes.  more » « less
Award ID(s):
2030159 1955306
PAR ID:
10538242
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE Microwave Theory and Techniques Society
Date Published:
Journal Name:
IEEE Transactions on Microwave Theory and Techniques
ISSN:
0018-9480
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a low phase noise four-core triple-band voltage controlled-oscillator (VCO) with reconfigurable oscillator cores and multi-mode resonator. By activation/deactivation of oscillator cores and change of resonator impedance in three modes of operations, the proposed VCO provides complete freedom in selecting the resonance frequency for three operation bands in the mm-wave range. Compared to VCOs using switch-capacitor-bank for multi-band operation, the proposed VCO does not use any series switches with passive components in the resonator to provide a low phase noise in all three bands of operation. As a proof of concept, the proposed four-core triple-band VCO is implemented in a 65 nm CMOS process using four class-D oscillators with tail switches and a compact high-Q triple-mode resonator. The VCO oscillation frequencies center at 19, 28, and 38 GHz while providing good phase noise and low power consumption in all bands. Measured results show the total frequency tuning range (FTR) of 38.5% while the PN at 1MHz offset varies from -100.3 dBc/Hz to -106.06dBc/Hz resulting in an excellent FoMT of 199.8 dBc/Hz. 
    more » « less
  2. This article presents a dual-band power amplifier for 28 and 39 GHz frequency bands based on a new dual-path transformer (DPT). This DPT can provide two optimum inductive values at two different frequency bands to optimally design the matching networks for each band without using any switch circuitries. It operates as the output and input matching networks in a parallel power combiner and divider, respectively. DPT-based PA breaks the trade-off between bandwidth and performance in conventional wideband PAs by separating one whole wideband into two narrow bands providing optimum input and output matchings for each band. The DPT-based PA has two input and two output ports. One set of input and output ports is dedicated to a lower frequency band and the other set of input and outport ports can be used for a higher frequency band. Each output port can drive a separate antenna in a phased array for each frequency band. The proposed PA prototype is fabricated in a 65 nm CMOS process achieving 15.3 and 14.0 dBm of saturated output power in 28 and 39 GHz. The peak efficiency of the PA is 34.1% and 30.2% at 28 and 39 GHz frequency bands. The PA has a measured EVM with 64-QAM modulated signal in both frequency bands showing −25.03 and −25.10 dB in the low and higher frequency bands, respectively. 
    more » « less
  3. This paper presents a dual-band RF rectifying circuit for wireless power transmission at 1.17 GHz and 2.4 GHz. A dual-band harmonic-tuned inverse-class F/class-F mode power amplifier using a 10 W GaN device has been utilized to implement the proposed rectifier with an on-board coupler and phase shifter. The matching circuit is precisely designed so that the circuit operates in inverse class F and class F mode in the lower and upper frequency bands using dual-band harmonic tuning, respectively. Measurement results show that the rectifier circuit has 78% and 76% efficiencies at 1.17 GHz and 2.4 GHz frequency bands, respectively. To the best of the authors' knowledge, this rectifier is the first demonstration of a dual-band harmonic-tuned synchronous rectifier using a GaN HEMT device with an integrated coupler and phase-shifter for a watt-level RF input power. 
    more » « less
  4. In this article, a high-efficiency and high-density 2.5 kW four-level interleaved flying capacitor multilevel (FCML) totem-pole bridgeless power-factor-correction (PFC) rectifier with 200 V GaN devices is analyzed, designed, and tested. This 2.5 kW four-level continuous conduction mode (CCM) GaN totem pole PFC operates with three times inductor current ripple frequency than that of the switching frequency which significantly reduces the size of the inductors while also supporting switching loss reduction. This article compares the loss of the two-level CCM GaN totem-pole PFC, four-level non-interleaved FCML PFC and interleaved four-level FCML PFC with the same ripple frequency (300 kHz) and shows that the interleaved four-level CCM GaN PFC has much less device loss. In addition, this article discusses the detailed EMI spectrum analysis and derivation of the mathematical model for determining the attenuation requirement of the four-level interleaved FCML PFC converter followed by volumetric co-optimization of AC-side passives i.e., the boost inductor and differential mode (DM) EMI filter. A 2.5 kW four-level interleaved FCML GaN totem-pole PFC prototype with an optimized 94 kHz switching frequency is developed and tested in this article. The converter exhibits a peak efficiency of 99.14% with system power density reaching 89.47 W/inch3. 
    more » « less
  5. SPT-3G+ is the next-generation camera for the South Pole Telescope (SPT). SPT is designed to measure the cosmic microwave background (CMB) and the mm/sub-mm sky. The planned focal plane consists of 34,000 microwave kinetic inductance detectors (MKIDs), divided among three observing bands centered at 220, 285, and 345 GHz. Each readout line is designed to measure 800 MKIDs over a 500 MHz bandwidth, which places stringent constraints on the accuracy of the frequency placement required to limit resonator collisions that reduce the overall detector yield. To meet this constraint, we are developing a two-step process that first optically maps the resonance to a physical pixel location, and then next trims the interdigitated capacitor (IDC) to adjust the resonator frequency. We present a cryogenic LED apparatus operable at 300 mK for the optical illumination of SPT-3G+ detector arrays. We demonstrate integration of the LED controls with the GHz readout electronics (RF-ICE) to take data on an array of prototype SPT-3G+ detectors. We show that this technique is useful for characterizing defects in the resonator frequency across the detector array and will allow for improvements in the detector yield. 
    more » « less