skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on January 1, 2025

Title: A Triple-Band, High DC-to-RF Efficiency, Multicore VCO With a Dual-Path Inductor and Mode-Switching Capacitor
This article introduces an innovative four-port dual-path inductor designed to deliver two distinct inductance values to the resonator of a voltage-controlled oscillator (VCO). The switching between the inductor’s two excitation modes, even and odd, is determined by the differential excitation’s input polarity, eliminating the need for a series switch. Thus, the inductor has a high-quality factor ( Q ) in both modes. The inductances in these modes can be independently set based on desired frequencies. This inductance change achieves coarse frequency tuning, while fine-tuning is realized by a conventional 2-bit capacitor bank with a small-size varactor. This inductor is well suited for designing multiband VCOs aimed at widely spaced operation frequency bands. Apart from the inductance change, a particular case of mode-switching capacitor is employed to extend to another frequency band in between the low and middle bands, achieving triple-band oscillation. As a result, this article presents two VCOs designed using the proposed inductor: one in class-D biasing in a 65-nm CMOS process and another with class-B biasing in a 180-nm BiCMOS process. Both VCOs successfully oscillate across three distinct frequency bands, centered at 19, 28, and 36 GHz, while maintaining outstanding phase noise and minimal power consumption. Measurement results show good match with simulation, resulting in a peak figure of merit (FoM) of 185.7 dBc/Hz at 18.5 GHz, and occupy 0.088- mm2 (250 × 350 μ m) area in both processes.  more » « less
Award ID(s):
2030159 1955306
NSF-PAR ID:
10538242
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE Microwave Theory and Techniques Society
Date Published:
Journal Name:
IEEE Transactions on Microwave Theory and Techniques
ISSN:
0018-9480
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a low phase noise four-core triple-band voltage controlled-oscillator (VCO) with reconfigurable oscillator cores and multi-mode resonator. By activation/deactivation of oscillator cores and change of resonator impedance in three modes of operations, the proposed VCO provides complete freedom in selecting the resonance frequency for three operation bands in the mm-wave range. Compared to VCOs using switch-capacitor-bank for multi-band operation, the proposed VCO does not use any series switches with passive components in the resonator to provide a low phase noise in all three bands of operation. As a proof of concept, the proposed four-core triple-band VCO is implemented in a 65 nm CMOS process using four class-D oscillators with tail switches and a compact high-Q triple-mode resonator. The VCO oscillation frequencies center at 19, 28, and 38 GHz while providing good phase noise and low power consumption in all bands. Measured results show the total frequency tuning range (FTR) of 38.5% while the PN at 1MHz offset varies from -100.3 dBc/Hz to -106.06dBc/Hz resulting in an excellent FoMT of 199.8 dBc/Hz. 
    more » « less
  2. This article presents a dual-band power amplifier for 28 and 39 GHz frequency bands based on a new dual-path transformer (DPT). This DPT can provide two optimum inductive values at two different frequency bands to optimally design the matching networks for each band without using any switch circuitries. It operates as the output and input matching networks in a parallel power combiner and divider, respectively. DPT-based PA breaks the trade-off between bandwidth and performance in conventional wideband PAs by separating one whole wideband into two narrow bands providing optimum input and output matchings for each band. The DPT-based PA has two input and two output ports. One set of input and output ports is dedicated to a lower frequency band and the other set of input and outport ports can be used for a higher frequency band. Each output port can drive a separate antenna in a phased array for each frequency band. The proposed PA prototype is fabricated in a 65 nm CMOS process achieving 15.3 and 14.0 dBm of saturated output power in 28 and 39 GHz. The peak efficiency of the PA is 34.1% and 30.2% at 28 and 39 GHz frequency bands. The PA has a measured EVM with 64-QAM modulated signal in both frequency bands showing −25.03 and −25.10 dB in the low and higher frequency bands, respectively. 
    more » « less
  3. This paper presents a dual-band RF rectifying circuit for wireless power transmission at 1.17 GHz and 2.4 GHz. A dual-band harmonic-tuned inverse-class F/class-F mode power amplifier using a 10 W GaN device has been utilized to implement the proposed rectifier with an on-board coupler and phase shifter. The matching circuit is precisely designed so that the circuit operates in inverse class F and class F mode in the lower and upper frequency bands using dual-band harmonic tuning, respectively. Measurement results show that the rectifier circuit has 78% and 76% efficiencies at 1.17 GHz and 2.4 GHz frequency bands, respectively. To the best of the authors' knowledge, this rectifier is the first demonstration of a dual-band harmonic-tuned synchronous rectifier using a GaN HEMT device with an integrated coupler and phase-shifter for a watt-level RF input power. 
    more » « less
  4. This paper presents the design of a 23.7 to 29.9 GHz wide tuning range VCO (Voltage Controlled Oscillator) designed using a 180 nm CMOS process. In order to achieve a good phase noise performance and get a wide frequency tuning range, cross-coupling and gate biasing techniques are utilized in the proposed cross-coupled LC VCO architecture. The simulated phase noise of −130 dBc/Hz is achieved at a 1 MHz offset. With the supply voltage of 1.8 V, the total power consumption of the VCO is 32.04 mW. The proposed VCO has good performance in terms of low-phase noise and has a wide frequency tuning range, which makes it highly suitable for millimeter wave-based applications. 
    more » « less
  5. Abstract

    We report a novel approach for dynamically tuning and reconfiguring microwave bandpass filters (BPFs) based on optically controlled switching elements using photoconductivity modulation in semiconductors. For a prototype demonstration, a BPF circuit featuring a second‐order design using two closely coupled split‐ring resonators embedded with multiple silicon chips (as switching elements) was designed, fabricated, and characterized. The silicon chips were optically linked to fiber‐coupled laser diodes (808 nm light) for switching/modulation, enabling dynamic tuning and reconfiguring of the BPF without any complex biasing circuits. By turning on and off the two laser diodes simultaneously, the BPF response can be dynamically reconfigured between bandpass and broadband suppression. Moreover, the attenuation level of the passband can be continuously adjusted (from 0.7 to 22 dB at the center frequency of 3.03 GHz) by varying the light intensity from 0 to 40 W/cm2. The tuning/reconfiguring 3‐dB bandwidth is estimated to be ~200 kHz. In addition, the potential and limitations of the proposed approach using photoconductivity modulation are discussed. With the strong tuning/reconfiguring capability demonstrated and the great potential for high‐frequency operation, this approach holds promise for the development of more advanced tunable filters and other adaptive circuits for next‐generation sensing, imaging, and communication systems.

     
    more » « less