skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncertainty Quantification and Simulation of Wind-Tunnel-Informed Stochastic Wind Loads
The simulation of stochastic wind loads is necessary for many applications in wind engineering. The proper-orthogonal-decomposition-(POD)-based spectral representation method is a popular approach used for this purpose, due to its computational efficiency. For general wind directions and building configurations, the data-informed POD-based stochastic model is an alternative that uses wind-tunnel-smoothed auto- and cross-spectral density as input, to calibrate the eigenvalues and eigenvectors of the target load process. Even though this method is straightforward and presents advantages, compared to using empirical target auto- and cross-spectral density, the limitations and errors associated with this model have not been investigated. To this end, an extensive experimental study on a rectangular building model considering multiple wind directions and configurations was conducted, to allow the quantification of uncertainty related to the use of short-duration wind tunnel records for calibration and validation of the data-informed POD-based stochastic model. The results demonstrate that the data-informed model can efficiently simulate stochastic wind loads with negligible model errors, while the errors associated with calibration to short-duration wind tunnel data can be important.  more » « less
Award ID(s):
2118488 1750339
PAR ID:
10538325
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Wind
Volume:
3
Issue:
3
ISSN:
2674-032X
Page Range / eLocation ID:
375 to 393
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This project has investigated the wind-induced pressure loads on a realistic low-rise building within an urban area (Y2E2 building in Stanford Engineering Quad). Experiments were conducted at two wind tunnels; the NHERI Wall of Wind (WOW) wind tunnel at the Florida International University facility, and the NHERI terraformer Boundary Layer Wind Tunnel at the University of Florida (UF). First, the building is considered as isolated with suburban terrain in both WT facilities. Consequently, the surrounding buildings were included onto the turntable, and pressure measurements were conducted on the target building. In all experiments, the measurements were performed across a total of 28 wind directions, encompassing the complete wind rose. 
    more » « less
  2. Boundary Layer Wind Tunnel (BLWT) facilities are commonly used for assessing wind loads on structures. Although BLWT facilities routinely match 1st and 2nd-order wind profile models, evidence suggests that turbulence in the roughness sublayer and the inertial sublayer exhibit non-Gaussian higher-order properties. These non-Gaussian properties can influence peak wind pressures, which govern certain structural limit states and play an important role in design. In the first part of this project, Machine learning (ML) methods are employed to identify relationships between roughness element configurations and higher-order statistical properties of the wind field. A semi-automated framework with an active learning portion and a wind tunnel experimental procedure is developed. The learning framework adaptively selects roughness profiles and launches new experiments to identify differing profiles with second-order equivalent flow as quantified by turbulence intensity. The premise is that second-order equivalent wind fields can differ in higher-order properties and therefore extreme value derived peak loads may differ. Over the course of this project, the turbulence profiles from hundreds of different Terraformer roughness element configurations were collected, providing a very rich dataset of boundary layer flow as a function of upwind fetch. Experiment 1 provides the metadata to describe and interpret measured wind profiles at the UFBLWT for a data set collected for the Benchmark experiments and 3 different phases: 1) Sinusoidal waves experiments, 2) Shape study experiments and, 3) Random field experiments. Experiment 2 of this dataset presents the results of experiments conducted in the UFBLWT, with a focus on measuring turbulence characteristics and pressure coefficients on a bluff body under varying terrain roughness configurations. The dataset provides valuable insights into the influence of upwind fetch and surface roughness on wind-induced forces, contributing to improved modeling and prediction of wind loads on structures. Based on the Terraformer configurations in experiment 1, select configurations (Benchmark and Phase 1 Terraformer configurations only) were chosen for bluff body experiments, along with additional approach turbulence measurements at a lateral location to the model. This dataset includes three key components for Benchmark and Phase 1 Terraformer configurations: reference wind velocity (uRef), lateral approach flow profiles (LatFlow), and pressure coefficients (Cpdata) on the bluff body. 
    more » « less
  3. Wind tunnel experiments were performed to quantify the coupling mechanisms between incoming wind flows, power output fluctuations, and unsteady tower aerodynamic loads of a model wind turbine under periodically oscillating wind environments across various yaw misalignment angles. A high-resolution load cell and a data logger at high temporal resolution were applied to quantify the aerodynamic loads and power output, and time-resolved particle image velocimetry system was used to characterize incoming and wake flow statistics. Results showed that due to the inertia of the turbine rotor, the time series of power output exhibits a distinctive phase lag compared to the incoming periodically oscillating wind flow, whereas the phase lag between unsteady aerodynamic loads and incoming winds was negligible. Reduced-order models based on the coupling between turbine properties and incoming periodic flow characteristics were derived to predict the fluctuation intensity of turbine power output and the associated phase lag, which exhibited reasonable agreement with experiments. Flow statistics demonstrated that under periodically oscillating wind environments, the growth of yaw misalignment could effectively mitigate the overall flow fluctuation in the wake region and significantly enhance the stream-wise wake velocity cross correlation intensities downstream of the turbine hub location. 
    more » « less
  4. In the study, a series of wind tunnel tests were conducted to investigate wind effects acting on dome structures (1/60 scale) induced by straight-line winds at a Reynolds number in the order of 106. Computational Fluid Dynamics (CFD) simulations were performed as well, including a Large Eddy Simulation (LES) and Reynolds-Averaged Navier–Stokes (RANS) simulation, and their performances were validated by a comparison with the wind tunnel testing data. It is concluded that wind loads generally increase with upstream wind velocities, and they are reduced over suburban terrain due to ground friction. The maximum positive pressure normally occurs near the base of the dome on the windward side caused by the stagnation area and divergence of streamlines. The minimum suction pressure occurs at the apex of the dome because of the blockage of the dome and convergence of streamlines. Suction force is the most significant among all wind loads, and special attention should be paid to the roof design for proper wind resistance. Numerical simulations also indicate that LES results match better with the wind tunnel testing in terms of the distribution pattern of the mean pressure coefficient on the dome surface and total suction force. The mean and root-mean-square errors of the meridian pressure coefficient associated with the LES are about 60% less than those associated with RANS results, and the error of suction force is about 40–70% less. Moreover, the LES is more accurate in predicting the location of boundary layer separation and reproducing the complex flow field behind the dome, and is superior in simulating vortex structures around the dome to further understand the unsteadiness and dynamics in the flow field. 
    more » « less
  5. The impact of climate change and global warming makes it imperative to seek sustainable solutions for the built environment. To facilitate the design of future sustainable buildings, wind tunnel tests are conducted in this study to investigate the flow characteristics and wind energy potential over a flat building roof with different edge configurations. Specifically, this study addresses the effect of parapet walls and roof edge-mounted solar panels on the wind flow over a flat-roof tall building. The results show that parapet walls generally slow down the wind speed and increase turbulence intensity as well as skewness angle, which compromises the efficiency of traditional turbine-based wind energy harvesting. On the other hand, the presence of solar panels on the roof edge (or on the top of the parapet wall) further alters flow separation and has the potential to enhance wind energy harvesting over the roof, especially for the solar panel inclined at 30°. In addition to providing valuable data for validating computational fluid dynamics (CFD) simulations, this study could also help to guide the design of wind energy harvesting devices on the building roof and explore the promising synergy with solar panels. 
    more » « less