- Award ID(s):
- 1846174
- PAR ID:
- 10538337
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- BMC Genomics
- Volume:
- 24
- Issue:
- 1
- ISSN:
- 1471-2164
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
True, John (Ed.)Despite an abundance of gene expression surveys, comparatively little is known about Hox gene function in Chelicerata. Previous investigations of paralogs of labial (lab) and Deformed (Dfd) in a spider have shown that these play a role in tissue maintenance of the pedipalp segment (lab-1) and in patterning the first walking leg identity (Dfd-1), respectively. However, extrapolations of these data across chelicerates are hindered by the existence of duplicated Hox genes in arachnopulmonates (e.g., spiders and scorpions), which have resulted from an ancient whole genome duplication (WGD) event. Here, we investigated the function of the single-copy ortholog of lab in the harvestman Phalangium opilio, an exemplar of a lineage that was not subject to this WGD. Embryonic RNA interference against lab resulted in two classes of phenotypes: homeotic transformations of pedipalps to chelicerae, as well as reduction and fusion of the pedipalp and leg 1 segments. To test for combinatorial function, we performed a double knockdown of lab and Dfd, which resulted in a homeotic transformation of both pedipalps and the first walking legs into cheliceral identity, whereas the second walking leg is transformed into a pedipalpal identity. Taken together, these results elucidate a model for the Hox logic of head segments in Chelicerata. To substantiate the validity of this model, we performed expression surveys for lab and Dfd paralogs in scorpions and horseshoe crabs. We show that repetition of morphologically similar appendages is correlated with uniform expression levels of the Hox genes lab and Dfd, irrespective of the number of gene copies.more » « less
-
null (Ed.)Chelicerate arthropods exhibit dynamic genome evolution, with ancient whole-genome duplication (WGD) events affecting several orders. Yet, genomes remain unavailable for a number of poorly studied orders, such as Opiliones (daddy-long-legs), which has hindered comparative study. We assembled the first harvestman draft genome for the species Phalangium opilio , which bears elongate, prehensile appendages, made possible by numerous distal articles called tarsomeres. Here, we show that the genome of P. opilio exhibits a single Hox cluster and no evidence of WGD. To investigate the developmental genetic basis for the quintessential trait of this group—the elongate legs—we interrogated the function of the Hox genes Deformed ( Dfd ) and Sex combs reduced ( Scr ), and a homologue of Epidermal growth factor receptor ( Egfr ). Knockdown of Dfd incurred homeotic transformation of two pairs of legs into pedipalps, with dramatic shortening of leg segments in the longest leg pair, whereas homeosis in L3 is only achieved upon double Dfd + Scr knockdown. Knockdown of Egfr incurred shortened appendages and the loss of tarsomeres. The similarity of Egfr loss-of-function phenotypic spectra in insects and this arachnid suggest that repeated cooption of EGFR signalling underlies the independent gains of supernumerary tarsomeres across the arthropod tree of life.more » « less
-
Valverde, Selene Fernández (Ed.)Abstract Hox and ParaHox transcription factors are important for specifying cell fates along the primary body axes during the development of most animals. Within Cnidaria, much of the research on Hox/ParaHox genes has focused on Anthozoa (anemones and corals) and Hydrozoa (hydroids) and has concentrated on the evolution and function of cnidarian Hox genes in relation to their bilaterian counterparts. Here we analyze together the full complement of Hox and ParaHox genes from species representing all four medusozoan classes (Staurozoa, Cubozoa, Hydrozoa, and Scyphozoa) and both anthozoan classes (Octocorallia and Hexacorallia). Our results show that Hox genes involved in patterning the directive axes of anthozoan polyps are absent in the stem leading to Medusozoa. For the first time, we show spatial and temporal expression patterns of Hox and ParaHox genes in the upside-down jellyfish Cassiopea xamachana (Scyphozoa), which are consistent with diversification of medusozoan Hox genes both from anthozoans and within medusozoa. Despite unprecedented taxon sampling, our phylogenetic analyses, like previous studies, are characterized by a lack of clear homology between most cnidarian and bilaterian Hox and Hox-related genes. Unlike previous studies, we propose the hypothesis that the cnidarian–bilaterian ancestor possessed a remarkably large Hox complement and that extensive loss of Hox genes was experienced by both cnidarian and bilaterian lineages.more » « less
-
ABSTRACT The evolution of floral morphology in the monocot order Zingiberales shows a trend in which androecial whorl organs are progressively modified into variously conspicuous “petaloid” structures with differing degrees of fertility. Petaloidy of androecial members results from extensive laminarization of an otherwise radially symmetric structure. The genetic basis of the laminarization of androecial members has been addressed through recent candidate gene studies focused on understanding the spatiotemporal expression patterns of genes known to be necessary to floral organ formation. Here, we explore the correlation between gene duplication events and floral and inflorescence morphological diversification across the Zingiberales by inferring ancestral character states and gene copy number using the most widely accepted phylogenetic hypotheses. Our results suggest that the duplication and differential loss of
GLOBOSA (GLO) copies is correlated with a change in the degree of the laminarization of androecial members. We also find an association with increased diversification in most families. We hypothesize that retention of paralogs in flower development genes could have led to a developmental shift affecting androecial organs with potential adaptive consequences, thus favoring diversification in some lineages but not others. -
Abstract Gene duplication and polyploidization are genetic mechanisms that instantly add genetic material to an organism's genome. Subsequent modification of the duplicated material leads to the evolution of neofunctionalization (new genetic functions), subfunctionalization (differential retention of genetic functions), redundancy, or a decay of duplicated genes to pseudogenes. Phytochromes are light receptors that play a large role in plant development. They are encoded by a small gene family that in tomato is comprised of five members:
PHYA, PHYB1, PHYB2, PHYE, andPHYF. The most recent gene duplication within this family was in the ancestralPHYB gene. Using transcriptome profiling, co‐expression network analysis, and physiological and molecular experimentation, we show that tomatoSlPHYB1 andSlPHYB2 exhibit both common and non‐redundant functions. Specifically,PHYB1 appears to be the major integrator of light and auxin responses, such as gravitropism and phototropism, whilePHYB1 andPHYB2 regulate aspects of photosynthesis antagonistically to each other, suggesting that the genes have subfunctionalized since their duplication.