Abstract We prove that quasinormal modes (or resonant states) for linear wave equations in the subextremal Kerr and Kerr–de Sitter spacetimes are real analytic. The main novelty of this paper is the observation that the bicharacteristic flow associated to the linear wave equations for quasinormal modes with respect to a suitable Killing vector field has a stable radial point source/sink structure rather than merely a generalized normal source/sink structure. The analyticity then follows by a recent result in the microlocal analysis of radial points by Galkowski and Zworski. The results can then be recast with respect to the standard Killing vector field.
more »
« less
Wave equations in the Kerr–de Sitter spacetime: The full subextremal range
We prove that solutions to linear wave equations in a subextremal Kerr–de Sitter space- time have asymptotic expansions in quasinormal modes up to a decay order given by the normally hyperbolic trapping, extending the result of the second named author (2013). The main novelties are a different way of obtaining a Fredholm setup that defines the quasinormal modes and a new analysis of the trapping of lightlike geodesics in the Kerr–de Sitter spacetime, both of which apply in the full subextremal range. In particular, this reduces the question of decay for solutions to wave equations to the question of mode stability.
more »
« less
- PAR ID:
- 10538346
- Publisher / Repository:
- European Mathematical Society
- Date Published:
- Journal Name:
- Journal of the European Mathematical Society
- ISSN:
- 1435-9855
- Subject(s) / Keyword(s):
- subextremal Kerr–de Sitter spacetime resonances quasinormal modes radial points normally hyperbolic trapping
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A bstract Force-Free Electrodynamics for black holes in Anti de Sitter is considered. We present new, energy extracting solutions of Force-Free Electrodynamics in Anti de Sitter-Near Horizon Extremal Kerr and Super-Entropic Near Horizon Extremal Kerr geometries. The relevant equations of motion are derived from an action for force-free plasma surrounding spinning black holes with generic asymptotics. We consider the energy flux of electrodynamic fields in rotating frames to argue that the correct measure for energy extraction is the energy flux measured by a rotating observer in the near horizon region. We illustrate this procedure by application to near horizon solutions in Kerr, AdS-Kerr and BTZ.more » « less
-
Abstract In this note, we present a synopsis of geometric symmetries for (spin 0) perturbations around (4D) black holes and de Sitter space. For black holes, we focus on static perturbations, for which the (exact) geometric symmetries have the group structure of SO(1,3). The generators consist of three spatial rotations, and three conformal Killing vectors obeying a specialmelodiccondition. The static perturbation solutions form a unitary (principal series) representation of the group. The recently uncovered ladder symmetries follow from this representation structure; they explain the well-known vanishing of the black hole Love numbers. For dynamical perturbations around de Sitter space, the geometric symmetries are less surprising, following from the SO(1,4) isometry. As is known, the quasinormal solutions form a non-unitary representation of the isometry group. We provide explicit expressions for the ladder operators associated with this representation. In both cases, the ladder structures help connect the boundary condition at the horizon with that at infinity (black hole) or origin (de Sitter space), and they manifest as contiguous relations of the hypergeometric solutions.more » « less
-
We study axisymmetric solutions to the wave equation on extremal Kerr backgrounds and obtain integrated local energy decay (or Morawetz estimates) through an analysis exclusively in physical-space. Boundedness of the energy and Morawetz estimates for axisymmetric waves in extremal Kerr were first obtained by Aretakis [13] through the construction of frequency-localized currents used in particular to express the trapping degeneracy. Here we extend to extremal Kerr a method introduced by Stogin [63] in the sub-extremal case, simplifying Aretakis’ derivation of Morawetz estimates through purely classical currents.more » « less
-
The Carter tensor is a Killing tensor of the Kerr-Newman spacetime, and its existence implies the separability of the wave equation. Nevertheless, the Carter operator is known to commute with the D’Alembertian only in the case of a Ricci-flat metric. We show that, even though the Kerr-Newman spacetime satisfies the non-vacuum Einstein-Maxwell equations, its curvature and electromagnetic tensors satisfy peculiar properties which imply that the Carter operator still commutes with the wave equation. This feature allows to adapt to Kerr-Newman the physical-space analysis of the wave equation in Kerr by Andersson-Blue [4], which avoids frequency decomposition of the solution by precisely making use of the commutation with the Carter operator. We also extend the mathematical framework of physical-space analysis to the case of the Einstein-Maxwell equations on Kerr-Newman spacetime, representing coupled electromagnetic-gravitational perturbations of the rotating charged black hole. The physical-space analysis is crucial in this setting as the coupling of spin- 1 and spin-2 fields in the axially symmetric background prevents the separation in modes as observed by Chandrasekhar [19], and therefore represents an important step towards an analytical proof of the stability of the Kerr-Newman black hole.more » « less
An official website of the United States government

