skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interior over-penalized enriched Galerkin methods for second order elliptic equations
In this paper we propose a variant of enriched Galerkin methods for second order elliptic equations with over-penalization of interior jump terms. The bilinear form with interior over-penalization gives a non-standard norm which is different from the discrete energy norm in the classical discontinuous Galerkin methods. Nonetheless we prove that optimal a priori error estimates with the standard discrete energy norm can be obtained by combining a priori and a posteriori error analysis techniques. We also show that the interior over-penalization is advantageous for constructing preconditioners robust to mesh refinement by analyzing spectral equivalence of bilinear forms. Numerical results are included to illustrate the convergence and preconditioning results.  more » « less
Award ID(s):
2110781
PAR ID:
10538369
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Computers & Mathematics with Applications
Volume:
152
Issue:
C
ISSN:
0898-1221
Page Range / eLocation ID:
102 to 111
Subject(s) / Keyword(s):
Discontinuous Galerkin methods Error analysis Preconditioning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L 2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L 2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L 2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L 2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results. 
    more » « less
  2. Abstract An interior penalty discontinuous Galerkin method is devised to approximate minimizers of a linear folding model by discontinuous isoparametric finite element functions that account for an approximation of a folding arc. The numerical analysis of the discrete model includes an a priori error estimate in case of an accurate representation of the folding curve by the isoparametric mesh. Additional estimates show that geometric consistency errors may be controlled separately if the folding arc is approximated by piecewise polynomial curves. Various numerical experiments are carried out to validate the a priori error estimate for the folding model. 
    more » « less
  3. Abstract In this paper we study hybridized discontinuous Galerkin methods for viscoacoustic wave equations with a general number of viscosity terms. For viscoacoustic equations rewritten as a first order symmetric hyperbolic system, we develop a hybridized local discontinuous Galerkin method which is robust for the number of viscosity terms. We show that the method satisfies a discrete energy estimate such that the implicit constants in the energy estimate are independent of the number of viscosity terms and the length of simulation time. Furthermore, we show that the sizes of reduced system after static condensation are independent of the number of viscosity terms. Optimal a priori error estimates with the Crank–Nicolson scheme are proved and numerical test results are included. 
    more » « less
  4. We present an optimal a priori error estimates of the elliptic problems with Dirac sources away from the singular point using discontinuous and enriched Galerkin finite element methods. It is widely shown that the finite element solutions for elliptic problems with Dirac source terms converge sub-optimally in classical norms on uniform meshes. However, here we employ inductive estimates and norm to obtain the optimal order by excluding the small ball regions with the singularities for both two and three dimensional domains. Numerical examples are presented to substantiate our theoretical results. 
    more » « less
  5. We consider a model convection-diffusion problem and present our recent analysis and numerical results regarding mixed finite element formulation and discretization in the singular perturbed case when the convection term dominates the problem. Using the concepts of optimal norm and saddle point reformulation, we found new error estimates for the case of uniform meshes. We compare the standard linear Galerkin discretization to a saddle point least square discretization that uses quadratic test functions, and explain the non-physical oscillations of the discrete solutions. We also relate a known upwinding Petrov–Galerkin method and the stream-line diffusion discretization method, by emphasizing the resulting linear systems and by comparing appropriate error norms. The results can be extended to the multidimensional case in order to find efficient approximations for more general singular perturbed problems including convection dominated models. 
    more » « less