skip to main content


This content will become publicly available on August 1, 2025

Title: Subrank and optimal reduction of scalar multiplications to generic tensors
The subrank of a tensor measures how much a tensor can be diagonalized. We determine this parameter precisely for essentially all (i.e., generic) tensors.  more » « less
Award ID(s):
2147769
PAR ID:
10538557
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of the London Mathematical Society
Volume:
110
Issue:
2
ISSN:
0024-6107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A tensor network is a diagram that specifies a way to "multiply" a collection of tensors together to produce another tensor (or matrix). Many existing algorithms for tensor problems (such as tensor decomposition and tensor PCA), although they are not presented this way, can be viewed as spectral methods on matrices built from simple tensor networks. In this work we leverage the full power of this abstraction to design new algorithms for certain continuous tensor decomposition problems. An important and challenging family of tensor problems comes from orbit recovery, a class of inference problems involving group actions (inspired by applications such as cryo-electron microscopy). Orbit recovery problems over finite groups can often be solved via standard tensor methods. However, for infinite groups, no general algorithms are known. We give a new spectral algorithm based on tensor networks for one such problem: continuous multi-reference alignment over the infinite group SO(2). Our algorithm extends to the more general heterogeneous case. 
    more » « less
  2. Tensor computations present significant performance challenges that impact a wide spectrum of applications. Efforts on improving the performance of tensor computations include exploring data layout, execution scheduling, and parallelism in common tensor kernels. This work presents a benchmark suite for arbitrary-order sparse tensor kernels using state-of-the-art tensor formats: coordinate (COO) and hierarchical coordinate (HiCOO). It demonstrates a set of reference tensor kernel implementations and some observations on Intel CPUs and NVIDIA GPUs. 
    more » « less
  3. An important sparse tensor computation is sparse-tensor-dense-matrix multiplication (SpTM), which is used in tensor decomposition and applications. SpTM is a multi-dimensional analog to sparse-matrix-dense-matrix multiplication (SpMM). In this article, we employ a hierarchical tensor data layout that can unfold a multidimensional tensor to derive a 2D matrix, making it possible to compute SpTM using SpMM kernel implementations for GPUs. We compare two SpMM implementations to the state-of-the-art PASTA sparse tensor contraction implementation using: (1) SpMM with hierarchical tensor data layout; and, (2) unfolding followed by an invocation of cuSPARSE’s SpMM. Results show that SpMM can outperform PASTA 70.9% of the time, but none of the three approaches is best overall. Therefore, we use a decision tree classifier to identify the best performing sparse tensor contraction kernel based on precomputed properties of the sparse tensor.

     
    more » « less
  4. null (Ed.)

    Real-world spatio-temporal data is often incomplete or inaccurate due to various data loading delays. For example, a location-disease-time tensor of case counts can have multiple delayed updates of recent temporal slices for some locations or diseases. Recovering such missing or noisy (under-reported) elements of the input tensor can be viewed as a generalized tensor completion problem. Existing tensor completion methods usually assume that i) missing elements are randomly distributed and ii) noise for each tensor element is i.i.d. zero-mean. Both assumptions can be violated for spatio-temporal tensor data. We often observe multiple versions of the input tensor with different under-reporting noise levels. The amount of noise can be time- or location-dependent as more updates are progressively introduced to the tensor. We model such dynamic data as a multi-version tensor with an extra tensor mode capturing the data updates. We propose a low-rank tensor model to predict the updates over time. We demonstrate that our method can accurately predict the ground-truth values of many real-world tensors. We obtain up to 27.2% lower root mean-squared-error compared to the best baseline method. Finally, we extend our method to track the tensor data over time, leading to significant computational savings.

     
    more » « less
  5. This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework. 
    more » « less