BackgroundHeart failure (HF) is a serious condition with increasing prevalence, high morbidity, and increased mortality. Obesity is an established risk factor for HF. Fluctuation in body mass index (BMI) has shown a higher risk of cardiovascular outcomes. We investigated the association between BMI variability and incident HF. Methods and ResultsIn the UK Biobank, we established a prospective cohort after excluding participants with prevalent HF or cancer at enrollment. A total of 99 368 White participants with ≥3 BMI measures during >2 years preceding enrollment were included, with a median follow‐up of 12.5 years. The within‐participant variability of BMI was evaluated using standardized SD and coefficient of variation. The association of BMI variability with incident HF was assessed using Fine and Gray's competing risk model, adjusting for confounding factors and participant‐specific rate of BMI change. Higher BMI variability measured in both SD and coefficient of variation was significantly associated with higher risk in HF incidence (SD: hazard ratio [HR], 1.05 [95% CI, 1.03–1.08],P<0.0001; coefficient of variation: HR, 1.07 [95% CI, 1.04–1.10],P<0.0001). ConclusionsLongitudinal health records capture BMI fluctuation, which independently predicts HF incidence.
more »
« less
A deep patient-similarity learning framework for the assessment of diastolic dysfunction in elderly patients
Abstract AimsAge-related changes in cardiac structure and function are well recognized and make the clinical determination of abnormal left ventricular (LV) diastolic dysfunction (LVDD) particularly challenging in the elderly. We investigated whether a deep neural network (DeepNN) model of LVDD, previously validated in a younger cohort, can be implemented in an older population to predict incident heart failure (HF). Methods and resultsA previously developed DeepNN was tested on 5596 older participants (66–90 years; 57% female; 20% Black) from the Atherosclerosis Risk in Communities Study. The association of DeepNN predictions with HF or all-cause death for the American College of Cardiology Foundation/American Heart Association Stage A/B (n = 4054) and Stage C/D (n = 1542) subgroups was assessed. The DeepNN-predicted high-risk compared with the low-risk phenogroup demonstrated an increased incidence of HF and death for both Stage A/B and Stage C/D (log-rank P < 0.0001 for all). In multi-variable analyses, the high-risk phenogroup remained an independent predictor of HF and death in both Stages A/B {adjusted hazard ratio [95% confidence interval (CI)] 6.52 [4.20–10.13] and 2.21 [1.68–2.91], both P < 0.0001} and Stage C/D [6.51 (4.06–10.44) and 1.03 (1.00–1.06), both P < 0.0001], respectively. In addition, DeepNN showed incremental value over the 2016 American Society of Echocardiography/European Association of Cardiovascular Imaging (ASE/EACVI) guidelines [net re-classification index, 0.5 (CI 0.4–0.6), P < 0.001; C-statistic improvement, DeepNN (0.76) vs. ASE/EACVI (0.70), P < 0.001] overall and maintained across stage groups. ConclusionDespite training with a younger cohort, a deep patient-similarity–based learning framework for assessing LVDD provides a robust prediction of all-cause death and incident HF for older patients.
more »
« less
- Award ID(s):
- 2125872
- PAR ID:
- 10538726
- Publisher / Repository:
- ESC -- European Society of Cardiology
- Date Published:
- Journal Name:
- European Heart Journal - Cardiovascular Imaging
- Volume:
- 25
- Issue:
- 7
- ISSN:
- 2047-2404
- Page Range / eLocation ID:
- 937 to 946
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Background Prior diagnosis of heart failure (HF) is associated with increased length of hospital stay (LOS) and mortality from COVID-19. Associations between substance use, venous thromboembolism (VTE) or peripheral arterial disease (PAD) and its effects on LOS or mortality in patients with HF hospitalised with COVID-19 remain unknown. Objective This study identified risk factors associated with poor in-hospital outcomes among patients with HF hospitalised with COVID-19. Methods Case–control study was conducted of patients with prior diagnosis of HF hospitalised with COVID-19 at an academic tertiary care centre from 1 January 2020 to 28 February 2021. Patients with HF hospitalised with COVID-19 with risk factors were compared with those without risk factors for clinical characteristics, LOS and mortality. Multivariate regression was conducted to identify multiple predictors of increased LOS and in-hospital mortality in patients with HF hospitalised with COVID-19. Results Total of 211 patients with HF were hospitalised with COVID-19. Women had longer LOS than men (9 days vs 7 days; p<0.001). Compared with patients without PAD or ischaemic stroke, patients with PAD or ischaemic stroke had longer LOS (7 days vs 9 days; p=0.012 and 7 days vs 11 days, p<0.001, respectively). Older patients (aged 65 and above) had increased in-hospital mortality compared with younger patients (adjusted OR: 1.04; 95% CI 1.00 to 1.07; p=0.036). Prior diagnosis of VTE increased mortality more than threefold in patients with HF hospitalised with COVID-19 (adjusted OR: 3.33; 95% CI 1.29 to 8.43; p=0.011). Conclusion Vascular diseases increase LOS and mortality in patients with HF hospitalised with COVID-19.more » « less
-
ImportanceBody mass index (BMI; calculated as weight in kilograms divided by height in meters squared) is a commonly used estimate of obesity, which is a complex trait affected by genetic and lifestyle factors. Marked weight gain and loss could be associated with adverse biological processes. ObjectiveTo evaluate the association between BMI variability and incident cardiovascular disease (CVD) events in 2 distinct cohorts. Design, Setting, and ParticipantsThis cohort study used data from the Million Veteran Program (MVP) between 2011 and 2018 and participants in the UK Biobank (UKB) enrolled between 2006 and 2010. Participants were followed up for a median of 3.8 (5th-95th percentile, 3.5) years. Participants with baseline CVD or cancer were excluded. Data were analyzed from September 2022 and September 2023. ExposureBMI variability was calculated by the retrospective SD and coefficient of variation (CV) using multiple clinical BMI measurements up to the baseline. Main Outcomes and MeasuresThe main outcome was incident composite CVD events (incident nonfatal myocardial infarction, acute ischemic stroke, and cardiovascular death), assessed using Cox proportional hazards modeling after adjustment for CVD risk factors, including age, sex, mean BMI, systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, smoking status, diabetes status, and statin use. Secondary analysis assessed whether associations were dependent on the polygenic score of BMI. ResultsAmong 92 363 US veterans in the MVP cohort (81 675 [88%] male; mean [SD] age, 56.7 [14.1] years), there were 9695 Hispanic participants, 22 488 non-Hispanic Black participants, and 60 180 non-Hispanic White participants. A total of 4811 composite CVD events were observed from 2011 to 2018. The CV of BMI was associated with 16% higher risk for composite CVD across all groups (hazard ratio [HR], 1.16; 95% CI, 1.13-1.19). These associations were unchanged among subgroups and after adjustment for the polygenic score of BMI. The UKB cohort included 65 047 individuals (mean [SD] age, 57.30 (7.77) years; 38 065 [59%] female) and had 6934 composite CVD events. Each 1-SD increase in BMI variability in the UKB cohort was associated with 8% increased risk of cardiovascular death (HR, 1.08; 95% CI, 1.04-1.11). Conclusions and RelevanceThis cohort study found that among US veterans, higher BMI variability was a significant risk marker associated with adverse cardiovascular events independent of mean BMI across major racial and ethnic groups. Results were consistent in the UKB for the cardiovascular death end point. Further studies should investigate the phenotype of high BMI variability.more » « less
-
ABSTRACT ObjectiveInflammation may be an integral physiological mechanism through which discrimination impacts cardiovascular health and contributes to racial health disparities. Limited research has examined psychosocial factors that protect against the negative effects of discrimination on inflammation. Perceived control is a promising possible protective factor, given that it has been shown to moderate the relationship between other psychosocial stressors and physiological outcomes. This study thus tested whether systemic inflammation mediated the link between discrimination and cardiovascular health and whether perceived control moderated this relationship. MethodsData for this project included 347 non-Hispanic/Latinx Black adults (mean [standard deviation] age = 51.64 [11.24] years; 33% female) taken from the Midlife in the United States study. Perceived control and daily discrimination were assessed via self-report, and inflammation was measured via circulating levels of C-reactive protein (CRP), interleukin-6 (IL-6), fibrinogen, and tumor necrosis factor α. Cardiovascular health was measured by morbidity of cardiovascular conditions: heart disease, hypertension, and/or stroke. ResultsCRP (indirect effect:b =0.004, 95% confidence interval [CI] = 0.001–0.007) and fibrinogen (indirect effect:b =0.002, 95% CI = 0.0003–0.005) mediated the link between discrimination and cardiovascular conditions. Perceived control moderated the relationship between discrimination and CRP (F(1, 293) = 4.58, ΔR2= 0.013,b= −0.02, SE = 0.01,p= .033). CRP mediated the link between discrimination and cardiovascular conditions only for those who reported low levels of perceived control (Index = −0.003, 95% CI = −0.007 to −0.0001). ConclusionFindings provide empirical evidence of inflammation as a mechanism linking discrimination to cardiovascular conditions among Black Americans. Additionally, perceived control may be protective. Findings could suggest beliefs about control as a potential intervention target to help reduce the negative effects of discrimination on cardiovascular health among Black Americans.more » « less
-
ImportanceSince 2013, the American College of Cardiology (ACC) and American Heart Association (AHA) have recommended the pooled cohort equations (PCEs) for estimating the 10-year risk of atherosclerotic cardiovascular disease (ASCVD). An AHA scientific advisory group recently developed the Predicting Risk of cardiovascular disease EVENTs (PREVENT) equations, which incorporated kidney measures, removed race as an input, and improved calibration in contemporary populations. PREVENT is known to produce ASCVD risk predictions that are lower than those produced by the PCEs, but the potential clinical implications have not been quantified. ObjectiveTo estimate the number of US adults who would experience changes in risk categorization, treatment eligibility, or clinical outcomes when applying PREVENT equations to existing ACC and AHA guidelines. Design, Setting, and ParticipantsNationally representative cross-sectional sample of 7765 US adults aged 30 to 79 years who participated in the National Health and Nutrition Examination Surveys of 2011 to March 2020, which had response rates ranging from 47% to 70%. Main Outcomes and MeasuresDifferences in predicted 10-year ASCVD risk, ACC and AHA risk categorization, eligibility for statin or antihypertensive therapy, and projected occurrences of myocardial infarction or stroke. ResultsIn a nationally representative sample of 7765 US adults aged 30 to 79 years (median age, 53 years; 51.3% women), it was estimated that using PREVENT equations would reclassify approximately half of US adults to lower ACC and AHA risk categories (53.0% [95% CI, 51.2%-54.8%]) and very few US adults to higher risk categories (0.41% [95% CI, 0.25%-0.62%]). The number of US adults receiving or recommended for preventive treatment would decrease by an estimated 14.3 million (95% CI, 12.6 million-15.9 million) for statin therapy and 2.62 million (95% CI, 2.02 million-3.21 million) for antihypertensive therapy. The study estimated that, over 10 years, these decreases in treatment eligibility could result in 107 000 additional occurrences of myocardial infarction or stroke. Eligibility changes would affect twice as many men as women and a greater proportion of Black adults than White adults. Conclusion and RelevanceBy assigning lower ASCVD risk predictions, application of the PREVENT equations to existing treatment thresholds could reduce eligibility for statin and antihypertensive therapy among 15.8 million US adults.more » « less
An official website of the United States government

