skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Mountain Gazelle Optimizer for truss structures optimization
Computational tools have been used in structural engineering design for numerous objectives, typically focusing on optimizing a design process. We first provide a detailed literature review for optimizing truss structures with metaheuristic algorithms. Then, we evaluate an effective solution for designing truss structures used in structural engineering through a method called the mountain gazelle optimizer, which is a nature-inspired meta-heuristic algorithm derived from the social behavior of wild mountain gazelles. We use benchmark problems for truss optimization and a penalty method for handling constraints. The performance of the proposed optimization algorithm will be evaluated by solving complex and challenging problems, which are common in structural engineering design. The problems include a high number of locally optimal solutions and a non-convex search space function, as these are considered suitable to evaluate the capabilities of optimization algorithms. This work is the first of its kind, as it examines the performance of the mountain gazelle optimizer applied to the structural engineering design field while assessing its ability to handle such design problems effectively. The results are compared to other optimization algorithms, showing that the mountain gazelle optimizer can provide optimal and efficient design solutions with the lowest possible weight.  more » « less
Award ID(s):
1916342
PAR ID:
10538768
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Applied Computing and Intelligence
Date Published:
Journal Name:
Applied Computing and Intelligence
Volume:
3
Issue:
2
ISSN:
2771-392X
Page Range / eLocation ID:
116 to 144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article highlights the absence of published paradigms hybridized by The Cuckoo Search (CS) and Stochastic Paint Optimizer (SPO) for optimizing truss structures using composite materials under natural frequency constraints. The article proposes a novel optimization algorithm called CSSPO for optimizing truss structures made of composite materials, known as fiber-reinforced polymer (FRP) composites, to address this gap. Optimization problems of truss structures under frequency constraints are recognized as challenging due to their non-linear and non-convex search spaces that contain numerous local optima. The proposed methodology produces high-quality optimal solutions with less computational effort than the original methods. The aim of this work is to compare the performance of carbon FRP (CFRP), glass FRP (GFRP), and steel using a novel hybrid algorithm to provide valuable insights and inform decision-making processes in material selection and design. Four benchmark structure trusses with natural frequency constraints were utilized to demonstrate the efficiency and robustness of the CSSPO. The numerical analysis findings indicate that the CSSPO outperforms the classical SPO and exhibits comparable or superior performance when compared to the SPO. The study highlights that implementing CFRP and GFRP composites in truss construction leads to a notable reduction in weight compared to using steel. 
    more » « less
  2. Abstract The increasing demand for concrete in construction presents challenges such as pollution, high energy consumption, and complex structural requirements. Three‐dimensional printing (3DP) offers a promising solution by eliminating formwork, reducing waste, and enabling intricate geometries. Predicting the strength of 3D‐printed fiber‐reinforced concrete (3DP‐FRC) remains challenging due to the nonlinear nature of neural networks and uncertainty in optimizing key parameters. In this study, we developed machine learning models using five metaheuristic algorithms—arithmetic optimization algorithm, African Vulture Optimization Algorithm, flow direction algorithm, generalized normal distribution optimization, and Mountain Gazelle Optimizer—to optimize the weights and biases in a feed‐forward backpropagation network. Among all the algorithms, MGO demonstrated the best performance. To address data limitations, a data augmentation method combining Kernel density estimation and Wasserstein generative adversarial networks is employed. Sensitivity analysis using SHapley Additive exPlanations (SHAP) identifies the most influential input parameters. The proposed MGO‐ANN model enhances predictive accuracy, reducing the need for extensive laboratory testing. Additionally, a user‐friendly graphical user interface is developed to facilitate practical applications in estimating 3DP‐FRC flexural strength. 
    more » « less
  3. Modern design problems present both opportunities and challenges, including multifunctionality, high dimensionality, highly nonlinear multimodal responses, and multiple levels or scales. These factors are particularly important in materials design problems and make it difficult for traditional optimization algorithms to search the space effectively, and designer intuition is often insufficient in problems of this complexity. Efficient machine learning algorithms can map complex design spaces to help designers quickly identify promising regions of the design space. In particular, Bayesian network classifiers (BNCs) have been demonstrated as effective tools for top-down design of complex multilevel problems. The most common instantiations of BNCs assume that all design variables are independent. This assumption reduces computational cost, but can limit accuracy especially in engineering problems with interacting factors. The ability to learn representative network structures from data could provide accurate maps of the design space with limited computational expense. Population-based stochastic optimization techniques such as genetic algorithms (GAs) are ideal for optimizing networks because they accommodate discrete, combinatorial, and multimodal problems. Our approach utilizes GAs to identify optimal networks based on limited training sets so that future test points can be classified as accurately and efficiently as possible. This method is first tested on a common machine learning data set, and then demonstrated on a sample design problem of a composite material subjected to a planar sound wave. 
    more » « less
  4. Abstract An automatic complex topology lightweight structure generation method (ACTLSGM) is presented to automatically generate 3D models of lightweight truss structures with a boundary surface of any shape. The core idea of the ACTLSGM is to use the PIMesh, a mesh generation algorithm developed by the authors, to generate node distributions inside the object representing the boundary surface of the target complex topology structures; raw lightweight truss structures are then generated based on the node distributions; the resulting lightweight truss structure is then created by adjusting the radius of the raw truss structures using an optimization algorithm based on finite element truss analysis. The finite element analysis-based optimization algorithm can ensure that the resulting structures satisfy the design requirements on stress distributions or stiffness. Three demos, including a lightweight structure for a cantilever beam, a femur bone scaffold, and a 3D shoe sole model with adaptive stiffness, can be used to adjust foot pressure distributions for patients with diabetic foot problems and are generated to demonstrate the performance of the ACTLSGM. The ACTLSGM is not limited to generating 3D models of medical devices, but can be applied in many other fields, including 3D printing infills and other fields where customized lightweight structures are required. 
    more » « less
  5. Surrogate based optimization (SBO) methods have gained popularity in the field of constrained optimization of expensive black-box functions. However, constraint handling methods do not usually guarantee strictly feasible candidates during optimization. This can become an issue in applied engineering problems where design variables must remain feasible for simulations to not fail. We propose a simple constraint-handling method for computationally inexpensive constraint functions which guarantees strictly feasible candidates when using a surrogate-based optimizer. We compare our method to other SBO algorithms and an EA on five analytical test functions, and an applied fully-resolved Computational Fluid Dynamics (CFD) problem concerned with optimization of an undulatory swimming of a fish-like body, and show that the proposed algorithm shows favorable results while guaranteeing feasible candidates. 
    more » « less