We investigate the emission of circularly polarized photons from a magnetized quark-gluon plasma with nonzero quark-number and chiral charge chemical potentials. These chemical potentials qualitatively influence the differential emission rates of circularly polarized photons. A nonzero net electric charge density, induced by quark-number chemical potentials, enhances the overall emission of one circular polarization over the other, while a nonzero chiral charge density introduces a spatial asymmetry in the emission with respect to reflection in the transverse plane. The signs of the electrical and chiral charge densities determine which circular polarization dominates overall and whether the emission preferentially aligns with or opposes the magnetic field. Based on these findings, we propose that polarized photon emission is a promising observable for characterizing the quark-gluon plasma produced in heavy-ion collisions.
This content will become publicly available on May 1, 2025
Chirality, or handedness, is a geometrical property denoting a lack of mirror symmetry. Chirality is ubiquitous in nature and is associated with the nonreciprocal interactions observed in complex systems ranging from biomolecules to topological materials. Here, we demonstrate that chiral arrangements of dipole-coupled atoms or molecules can facilitate the helicity-dependent superradiant emission of light. We show that the collective modes of these systems experience an emergent spin-orbit coupling that leads to chirality-dependent photon transport and nontrivial topological properties. These phenomena are fully described within the electric dipole approximation, resulting in very strong optical responses. Our results demonstrate an intimate connection between chirality, superradiance, and photon helicity and provide a comprehensive framework for studying electron transport dynamics in chiral molecules using cold atom quantum simulators.
- Award ID(s):
- 2207972
- PAR ID:
- 10538955
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Published by the American Physical Society 2024 -
The nontrivial topology of spin systems such as skyrmions in real space can promote complex electronic states. Here, we provide a general viewpoint at the emergence of topological spectral gaps in spin systems based on the methods of noncommutative-theory. By realizing that the structure of the observable algebra of spin textures is determined by the algebraic properties of the noncommutative torus, we arrive at a unified understanding of topological electronic states which we predict to arise in various noncollinear setups. The power of our approach lies in an ability to categorize emergent topological states algebraically without referring to smooth real- or reciprocal-space quantities. This opens a way towards an educated design of topological phases in aperiodic, disordered, or nonsmooth textures of spins and charges containing topological defects.
Published by the American Physical Society 2024 -
We investigate the collective non-Markovian dynamics of two fully excited two-level atoms coupled to a one-dimensional waveguide in the presence of delay. We demonstrate that analogous to the well-known superfluorescence phenomena, where an inverted atomic ensemble synchronizes to enhance its emission, there is a “subfluorescence” effect that synchronizes the atoms into an entangled dark state depending on the interatomic separation. The phenomenon can lead to a two-photon bound state in the continuum. Our results are pertinent to long-distance quantum networks, presenting a mechanism for spontaneous entanglement generation between distant quantum emitters.
Published by the American Physical Society 2024 -
Precision measurements with ultracold atoms and molecules are primed to probe beyond-the-standard model physics. Isotopologues of homonuclear molecules are a natural testbed for new Yukawa-type mass-dependent forces at nanometer scales, complementing existing mesoscopic-body and neutron scattering experiments. Here, we propose using isotopic shift measurements in molecular lattice clocks to constrain these new interactions from new massive scalar particles in therange: The new interaction would impart an extra isotopic shift to molecular levels on top of one predicted by the standard model. For the strontium dimer, a Hz-level agreement between experiment and theory could constrain the coupling of the new particles to hadrons by up to an order of magnitude over the most stringent existing experiments.
Published by the American Physical Society 2024 -
The Kondo lattice is one of the classic examples of strongly correlated electronic systems. We conduct a controlled study of the Kondo lattice in one dimension, highlighting the role of excitations created by the composite fermion operator. Using time-dependent matrix product state methods, we compute various correlation functions and contrast them with both large-N mean-field theory and the strong-coupling expansion. We show that the composite fermion operator creates long-lived, charge-e and spin-1/2 excitations, which cover the low-lying single-particle excitation spectrum of the system. Furthermore, spin excitations can be thought to be composed of such fractionalized quasiparticles with a residual interaction which tend to disappear at weak Kondo coupling.
Published by the American Physical Society 2024