skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Congestive mode-switching and economies of scale on a bus route
This paper introduces a type of circular causation called Congestive Mode-Switching (CMS) that may arise when an increase in congestion penalizes transit relative to driving. In turn, rising congestion persuades some transit riders to drive, which exacerbates congestion further, and so on. This circular causation can beget multiple equilibria with different levels of congestion and transit ridership. The paper explores this logic with a static model of a bus route. When the bus fleet size is fixed, CMS applies because congestion raises the bus cycle time and thus lowers bus frequency, resulting in higher wait times. When the fleet size depends on bus ridership, CMS is joined by economies of scale as a second source of circular causation. We derive the system’s equilibria using a static model in the vein of Walters (1961), which permits us to graphically characterize equilibria in useful ways. The comparative statics of a road improvement show how feedback alters first-order effects. A Downs-Thomson paradox is not possible, because a road improvement aids buses even more than cars. Continuous-time stability analysis shows that multiple equilibria may be stable.  more » « less
Award ID(s):
2052512
PAR ID:
10538980
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Transportation Research Part B: Methodological
Volume:
183
Issue:
C
ISSN:
0191-2615
Page Range / eLocation ID:
102930
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Extreme heat events induced by climate change present a growing risk to transit passenger comfort and health. To reduce exposure, agencies may consider changes to schedules that reduce headways on heavily trafficked bus routes serving vulnerable populations. This paper develops a schedule optimization model to minimize heat exposure and applies it to local bus services in Phoenix, Arizona, using agent-based simulation to inform travel demand and rider characteristics. Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by as much as 35% when operating at maximum fleet capacity. Outcome improvements are notably characterized by diminishing returns, owing to skewed ridership and the inverse relationship between fleet size and passenger wait time. Access to spare vehicles can also ensure significant reductions in exposure, especially under the most extreme temperatures. Rerouting, therefore, presents a low-cost, adaptable resilience strategy to protect riders from extreme heat exposure. 
    more » « less
  2. Public transits, such as buses and subway lines, offer affordable ride-sharing services and reduce the road network traffic, thus have significant impacts in mitigating the urban traffic congestion problem. However, it is non-trivial to evaluate a new transit plan, such as a new bus route or a new subway line, of its future ridership prior to actual deployment, since the travel preferences of passengers along the planned routes may vary. In this paper, we make the first attempt to model passengers' preferences of making various transit choices using a Markov Decision Process (MDP). Moreover, we develop a novel inverse preference learning algorithm to infer the passengers' preferences and predict the future human behavior changes, e.g., ridership, of a new urban transit plan before its deployment. We validate our proposed framework using a unique real-world dataset (from Shenzhen, China) with three subway lines opened during the data time span. With the data collected from both before and after the transit plan deployments, Our evaluation results demonstrated that the proposed framework can predict the ridership with only 19.8% relative error, which is 23%-51% lower than other baseline approaches. 
    more » « less
  3. Autonomous vehicle (AV) fleet management is one of the major aspects of AV development that needs to be standardized before AV deployment. There has been no consensus on whether AV deployment in general will be beneficial or detrimental in terms of road congestion. There are similarities between packet transmission in computer networks and AV transportation in road networks. In this work, the authors argue that congestion avoidance algorithms used in computer networks can be applied for AV fleet management. Authors modify and evaluate a novel adaptation of additive increase and multiplicative decrease (AMID) congestion avoidance algorithm. The authors propose assigning different priorities to transportation tasks in order to facilitate sharing the limited resources in such as usage of the road network. This will be modeled and assessed using a queueing model based on AVs arrival distribution. This will result in a load balancing paradigm that can be used to share and manage limited resources. Then, by using numerical study authors merge congestion avoidance and load balancing to analyze the authors' scheme in term of road network throughput (number of cars in network for a given time) for AV fleet management. Their evaluation demonstrates the improvement in terms of road network throughput. 
    more » « less
  4. This paper proposes a flexible rerouting strategy for the public transit to accommodate the spatio-temporal variation in the travel demand. Transit routes are typically static in nature, i.e., the buses serve well-defined routes; this results in people living in away from the bus routes choose alternate transit modes such as private automotive vehicles resulting in ever-increasing traffic congestion. In the flex-transit mode, we reroute the buses to accommodate high travel demand areas away from the static routes considering its spatio-temporal variation. We perform clustering to identify several flex stops; these are stops not on the static routes, but with high travel demand around them. We divide the bus stops on the static routes into critical and non-critical bus stops; critical bus stops refer to transfer points, where people change bus routes to reach their destinations. In the existing static scheduling process, some slack time is provided at the end of each trip to account for any travel delays. Thus, the additional travel time incurred due to taking flexible routes is constrained to be less than the available slack time. We use the percent increase in travel demand to analyze the effectiveness of the rerouting process. The proposed methodology is demonstrated using real-world travel data for Route 7 operated by the Nashville Metropolitan Transit Authority (MTA). 
    more » « less
  5. Effective public transit operations are one of the fundamental requirements for a modern community. Recently, a number of transit agencies have started integrating automated vehicle locators in their fleet, which provides a real-time estimate of the time of arrival. In this paper, we use the data collected over several months from one such transit system and show how this data can be potentially used to learn long term patterns of travel time. More specifically, we study the effect of weather and other factors such as traffic on the transit system delay. These models can later be used to understand the seasonal variations and to design adaptive and transient transit schedules. Towards this goal, we also propose an online architecture called DelayRadar. The novelty of DelayRadar lies in three aspects: (1) a data store that collects and integrates real-time and static data from multiple data sources, (2) a predictive statistical model that analyzes the data to make predictions on transit travel time, and (3) a decision making framework to develop an optimal transit schedule based on variable forecasts related to traffic, weather, and other impactful factors. This paper focuses on identifying the model with the best predictive accuracy to be used in DelayRadar. According to the preliminary study results, we are able to explain more than 70% of the variance in the bus travel time and we can make future travel predictions with an out-of-sample error of 4.8 minutes with information on the bus schedule, traffic, and weather. 
    more » « less