skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Short-Time Fourier Transform Analysis of Current Charge/Discharge Response of Lithium-Sulfur Batteries
Measurements acquired on batteries in the form of time signals such as voltage-time and capacity-time to assess their cyclability performance can be supplemented by examining their frequency-domain response. This allows one to determine the global characteristics of the signals and the battery, but not the local behavior, which is very important for determining for example battery fading. In this study we examine the short-time Fourier transform for time-frequency deconstruction of galvanostatic charge/discharge signals of lithium-sulfur batteries, taken as an example. The results displayed in terms of spectrograms show how the frequency content of such signals (e.g. charge and voltage time series) evolve with the lifetime of the batteries allowing the detection of critical changes in the response that may lead to fading and eventually default.  more » « less
Award ID(s):
2126190
PAR ID:
10539088
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Electrochemical society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
170
Issue:
11
ISSN:
0013-4651
Page Range / eLocation ID:
110511
Subject(s) / Keyword(s):
Short-Time Fourier Transform Analysis Lithium-Sulfur Batteries battery health
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Uwe Sauer, Dirk (Ed.)
    ABSTRACT State of Charge (SoC) and discharge capacity of the batteries are parameters that cannot be determined directly from the battery monitoring and control system and requires estimation. Current and voltage sensors have inherent error and delay leading to inaccurate measurements leading to inaccurate SoC and discharge capacity estimations. These sensors also have an additional cost to the battery system. This paper proposes a sensorless approach to estimate parameters of Vanadium Redox Flow Batteries (VRFBs) for both CC and CV charging methods by estimating battery current in CV mode and terminal voltage in CC mode. The results of estimations by the sensorless approach show a maximum relative error of 0.0035 in estimating terminal voltage in CC charging and a maximum relative error of 0.045 in estimating charging current in CV mode. Furthermore, long- term operation of vanadium redox flow batteries causes ion diffusions across the membrane and the depletion of active materials, which leads to capacity fading in VRFBs and inaccurate SoC estimation. To address the inaccuracy of SoC estimation in the long-term use of the battery, the capacity fading model is also considered for VRFBs in this paper. Experimental results show a 19% electrolyte volume change in the positive and negative tanks after 200 cycles of charge/discharge due to the bulk electrolyte transfer between the positive and negative sides of the battery system. This change of electrolyte volume results in 13.73% capacity fading after 200 cycles of charging/discharging. The SoC also changes by 7.1% after 200 cycles, due to the capacity and electrolyte volume loss, which shows the necessity of considering capacity fading in long-term use of the battery. 
    more » « less
  2. Abstract The superior properties, such as large interlayer spacing and the ability to host large alkali-metal ions, of two-dimensional (2D) materials based on transition metal di-chalcogenides (TMDs) enable next-generation battery development beyond lithium-ion rechargeable batteries. In addition, compelling but rarely inspected TMD alloys provide additional opportunities to tailor bandgap and enhance thermodynamic stability. This study explores the sodium-ion (Na-ion) and potassium-ion (K-ion) storage behavior of cation-substituted molybdenum tungsten diselenide (MoWSe2), a TMD alloy. This research also investigates upper potential suspension to overcome obstacles commonly associated with TMD materials, such as capacity fading at high current rates, prolonged cycling conditions, and voltage polarization during conversion reaction. The voltage cut-off was restricted to 1.5 V, 2.0 V, and 2.5 V to realize the material’s Na+and K+ion storage behavior. Three-dimensional (3D) surface plots of differential capacity analysis up to prolonged cycles revealed the convenience of voltage suspension as a viable method for structural preservation. Moreover, the cells with higher potential cut-off values conveyed improved cycling stability, higher and stable coulombic efficiency for Na+and K+ion half-cells, and increased capacity retention for Na+ion half-cells, respectively, with half-cells cycled at higher voltage ranges. 
    more » « less
  3. Nowadays, lithium-ion batteries are undoubtedly known as the most promising rechargeable batteries. However, these batteries face some big challenges, like not having enough energy and not lasting long enough, that should be addressed. Ternary Ni-rich Li[NixCoyMnz]O2 and Li[NixCoyAlz]O2 cathode materials stand as the ideal candidate for a cathode active material to achieve high capacity and energy density, low manufacturing cost, and high operating voltage. However, capacity gain from Ni enrichment is nullified by the concurrent fast capacity fading because of issues such as gas evolution, microcracks propagation and pulverization, phase transition, electrolyte decomposition, cation mixing, and dissolution of transition metals at high operating voltage, which hinders their commercialization. In order to tackle these problems, researchers conducted many strategies, including elemental doping, surface coating, and particle engineering. This review paper mainly talks about origins of problems and their mechanisms leading to electrochemical performance deterioration for Ni-rich cathode materials and modification approaches to address the problems. 
    more » « less
  4. Abstract Optimizing charging protocols is critical for reducing battery charging time and decelerating battery degradation in applications such as electric vehicles. Recently, reinforcement learning (RL) methods have been adopted for such purposes. However, RL‐based methods may not ensure system (safety) constraints, which can cause irreversible damages to batteries and reduce their lifetime. To this end, this article proposes an adaptive and safe RL framework to optimize fast charging strategies while respecting safety constraints with a high probability. In our method, any unsafe action that the RL agent decides will be projected into a safety region by solving a constrained optimization problem. The safety region is constructed using adaptive Gaussian process (GP) models, consisting of static and dynamic GPs, that learn from online experience to adaptively account for any changes in battery dynamics. Simulation results show that our method can charge the batteries rapidly with constraint satisfaction under varying operating conditions. 
    more » « less
  5. As technology advances and cities become more innovative, the need to harvest energy to power intelligent devices at remote locations, such as wireless sensors, is increasing. This paper focuses on studying and simulating an energy management system (EMS) for energy harvesting with a battery and a supercapacitor for low power applications. Lithium-ion batteries are the primary energy storage source for low power applications due to their high energy density and efficiency. On the other hand, the supercapacitors excel in fast charge and discharge. Furthermore, supercapacitors tolerate high currents due to their low equivalent series resistance (ESR). The supercapacitor in the system increases the time response of the power delivery to the load, and it also absorbs the high currents in the system. Moreover, the supercapacitor covers short-time load demand due to the fluctuation of the renewable source. The EMS monitors the proposed system to maintain power to the load either from the renewable source or the energy storage. The power flow of the energy storage is controlled via DC-DC bidirectional converters. The lithium-ion battery is charged via a constant current (CC) using a sliding mode controller (SMC) and a constant voltage (CV) via a typical PI controller. The response of the SMC current controller is compared with PI and Fuzzy current controller. Furthermore, the performance of a system having and not having a supercapacitor is compared. Finally, MATLAB modeling system simulation and experimental implementation results are analyzed and presented. 
    more » « less