Abstract Insertions and deletions (Indels) represent one of the major variation types in the human genome and have been implicated in diseases including cancer. To study the features of somatic indels in different cancer genomes, we investigated the indels from two large samples of cancer types: invasive breast carcinoma (BRCA) and lung adenocarcinoma (LUAD). Besides mapping somatic indels in both coding and untranslated regions (UTRs) from the cancer whole exome sequences, we investigated the overlap between these indels and transcription factor binding sites (TFBSs), the key elements for regulation of gene expression that have been found in both coding and non-coding sequences. Compared to the germline indels in healthy genomes, somatic indels contain more coding indels with higher than expected frame-shift (FS) indels in cancer genomes. LUAD has a higher ratio of deletions and higher coding and FS indel rates than BRCA. More importantly, these somatic indels in cancer genomes tend to locate in sequences with important functions, which can affect the core secondary structures of proteins and have a bigger overlap with predicted TFBSs in coding regions than the germline indels. The somatic CDS indels are also enriched in highly conserved nucleotides when compared with germline CDS indels.
more »
« less
Insertion–Deletion Events Are Depleted in Protein Regions with Predicted Secondary Structure
Abstract A fundamental goal in evolutionary biology and population genetics is to understand how selection shapes the fate of new mutations. Here, we test the null hypothesis that insertion–deletion (indel) events in protein-coding regions occur randomly with respect to secondary structures. We identified indels across 11,444 sequence alignments in mouse, rat, human, chimp, and dog genomes and then quantified their overlap with four different types of secondary structure—alpha helices, beta strands, protein bends, and protein turns—predicted by deep-learning methods of AlphaFold2. Indels overlapped secondary structures 54% as much as expected and were especially underrepresented over beta strands, which tend to form internal, stable regions of proteins. In contrast, indels were enriched by 155% over regions without any predicted secondary structures. These skews were stronger in the rodent lineages compared to the primate lineages, consistent with population genetic theory predicting that natural selection will be more efficient in species with larger effective population sizes. Nonsynonymous substitutions were also less common in regions of protein secondary structure, although not as strongly reduced as in indels. In a complementary analysis of thousands of human genomes, we showed that indels overlapping secondary structure segregated at significantly lower frequency than indels outside of secondary structure. Taken together, our study shows that indels are selected against if they overlap secondary structure, presumably because they disrupt the tertiary structure and function of a protein.
more »
« less
- Award ID(s):
- 2027373
- PAR ID:
- 10539339
- Editor(s):
- Golding, Brian
- Publisher / Repository:
- Genome Biology and Evolution
- Date Published:
- Journal Name:
- Genome Biology and Evolution
- Volume:
- 16
- Issue:
- 5
- ISSN:
- 1759-6653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The inhibition of protein–protein interactions is a growing strategy in drug development. In addition to structured regions, many protein loop regions are involved in protein–protein interactions and thus have been identified as potential drug targets. To effectively target such regions, protein structure is critical. Loop structure prediction is a challenging subgroup in the field of protein structure prediction because of the reduced level of conservation in protein sequences compared to the secondary structure elements. AlphaFold 2 has been suggested to be one of the greatest achievements in the field of protein structure prediction. The AlphaFold 2 predicted protein structures near the X-ray resolution in the Critical Assessment of protein Structure Prediction (CASP 14) competition in 2020. The purpose of this work is to survey the performance of AlphaFold 2 in specifically predicting protein loop regions. We have constructed an independent dataset of 31,650 loop regions from 2613 proteins (deposited after the AlphaFold 2 was trained) with both experimentally determined structures and AlphaFold 2 predicted structures. With extensive evaluation using our dataset, the results indicate that AlphaFold 2 is a good predictor of the structure of loop regions, especially for short loop regions. Loops less than 10 residues in length have an average Root Mean Square Deviation (RMSD) of 0.33 Å and an average the Template Modeling score (TM-score) of 0.82. However, we see that as the number of residues in a given loop increases, the accuracy of AlphaFold 2’s prediction decreases. Loops more than 20 residues in length have an average RMSD of 2.04 Å and an average TM-score of 0.55. Such a correlation between accuracy and length of the loop is directly linked to the increase in flexibility. Moreover, AlphaFold 2 does slightly over-predict α-helices and β-strands in proteins.more » « less
-
Abstract It has long been known that exons can serve ascis‐regulatory sequences, such as enhancers. However, the prevalence of such dual‐use of exons and how they evolve remain elusive. Based on our recently predicted, highly accurate large sets ofcis‐regulatory module candidates (CRMCs) and non‐CRMCs in the human genome, we find that exonic transcription factor binding sites (TFBSs) occupy at least a third of the total exon lengths, and 96.7% of genes have exonic TFBSs. Both A/T and C/G in exonic TFBSs are more likely under evolutionary constraints than those in non‐CRMC exons. Exonic TFBSs in codons tend to encode loops rather than more critical helices and strands in protein structures, while exonic TFBSs in untranslated regions (UTRs) tend to avoid positions where known UTR‐related functions are located. Moreover, active exonic TFBSs tend to be in close physical proximity to distal promoters whose genes have elevated transcription levels. These results suggest that exonic TFBSs might be more prevalent than originally thought and likely in dual‐use. We proposed a parsimonious model that well explains the observed evolutionary behaviors of exonic TFBS as well as how a stretch of codons evolve into a TFBS. Key pointsThere are more exonic regulatory sequences in the human genome than originally thought.Exonic transcription factor binding sites are more likely under negative selection or positive selection than counterpart nonregulatory sequences.Exonic transcription factor binding sites tend to be located in genome sequences that encode less critical loops in protein structures, or in less critical parts in 5′ and 3′ untranslated regions.more » « less
-
ABSTRACT In recent years, considerable progress has been made in topologically and functionally characterizing integral outer membrane proteins (OMPs) of Treponema pallidum subspecies pallidum , the syphilis spirochete, and identifying its surface-exposed β-barrel domains. Extracellular loops in OMPs of Gram-negative bacteria are known to be highly variable. We examined the sequence diversity of β-barrel-encoding regions of tprC , tprD , and bamA in 31 specimens from Cali, Colombia; San Francisco, California; and the Czech Republic and compared them to allelic variants in the 41 reference genomes in the NCBI database. To establish a phylogenetic framework, we used T. pallidum 0548 ( tp0548 ) genotyping and tp0558 sequences to assign strains to the Nichols or SS14 clades. We found that (i) β-barrels in clinical strains could be grouped according to allelic variants in T. pallidum subsp. pallidum reference genomes; (ii) for all three OMP loci, clinical strains within the Nichols or SS14 clades often harbored β-barrel variants that differed from the Nichols and SS14 reference strains; and (iii) OMP variable regions often reside in predicted extracellular loops containing B-cell epitopes. On the basis of structural models, nonconservative amino acid substitutions in predicted transmembrane β-strands of T. pallidum repeat C (TprC) and TprD2 could give rise to functional differences in their porin channels. OMP profiles of some clinical strains were mosaics of different reference strains and did not correlate with results from enhanced molecular typing. Our observations suggest that human host selection pressures drive T. pallidum subsp. pallidum OMP diversity and that genetic exchange contributes to the evolutionary biology of T. pallidum subsp. pallidum . They also set the stage for topology-based analysis of antibody responses to OMPs and help frame strategies for syphilis vaccine development. IMPORTANCE Despite recent progress characterizing outer membrane proteins (OMPs) of Treponema pallidum , little is known about how their surface-exposed, β-barrel-forming domains vary among strains circulating within high-risk populations. In this study, sequences for the β-barrel-encoding regions of three OMP loci, tprC , tprD , and bamA , in T. pallidum subsp. pallidum isolates from a large number of patient specimens from geographically disparate sites were examined. Structural models predict that sequence variation within β-barrel domains occurs predominantly within predicted extracellular loops. Amino acid substitutions in predicted transmembrane strands that could potentially affect porin channel function were also noted. Our findings suggest that selection pressures exerted within human populations drive T. pallidum subsp. pallidum OMP diversity and that recombination at OMP loci contributes to the evolutionary biology of syphilis spirochetes. These results also set the stage for topology-based analysis of antibody responses that promote clearance of T. pallidum subsp. pallidum and frame strategies for vaccine development based upon conserved OMP extracellular loops.more » « less
-
Skolnick, Jeffrey (Ed.)Systematically discovering protein-ligand interactions across the entire human and pathogen genomes is critical in chemical genomics, protein function prediction, drug discovery, and many other areas. However, more than 90% of gene families remain “dark”—i.e., their small-molecule ligands are undiscovered due to experimental limitations or human/historical biases. Existing computational approaches typically fail when the dark protein differs from those with known ligands. To address this challenge, we have developed a deep learning framework, called PortalCG, which consists of four novel components: (i) a 3-dimensional ligand binding site enhanced sequence pre-training strategy to encode the evolutionary links between ligand-binding sites across gene families; (ii) an end-to-end pretraining-fine-tuning strategy to reduce the impact of inaccuracy of predicted structures on function predictions by recognizing the sequence-structure-function paradigm; (iii) a new out-of-cluster meta-learning algorithm that extracts and accumulates information learned from predicting ligands of distinct gene families (meta-data) and applies the meta-data to a dark gene family; and (iv) a stress model selection step, using different gene families in the test data from those in the training and development data sets to facilitate model deployment in a real-world scenario. In extensive and rigorous benchmark experiments, PortalCG considerably outperformed state-of-the-art techniques of machine learning and protein-ligand docking when applied to dark gene families, and demonstrated its generalization power for target identifications and compound screenings under out-of-distribution (OOD) scenarios. Furthermore, in an external validation for the multi-target compound screening, the performance of PortalCG surpassed the rational design from medicinal chemists. Our results also suggest that a differentiable sequence-structure-function deep learning framework, where protein structural information serves as an intermediate layer, could be superior to conventional methodology where predicted protein structures were used for the compound screening. We applied PortalCG to two case studies to exemplify its potential in drug discovery: designing selective dual-antagonists of dopamine receptors for the treatment of opioid use disorder (OUD), and illuminating the understudied human genome for target diseases that do not yet have effective and safe therapeutics. Our results suggested that PortalCG is a viable solution to the OOD problem in exploring understudied regions of protein functional space.more » « less
An official website of the United States government

