skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing pair correlations in Fermi gases with Ramsey-Bragg interferometry
We propose an interferometric method to probe pair correlations in a gas of spin-1/2 1 / 2 fermions. The method consists of a Ramsey sequence where both spin states of the Fermi gas are set in a superposition of a state at rest and a state with a large recoil velocity. The two-body density matrix is extracted via the fluctuations of the transferred fraction to the recoiled state. In the pair-condensed phase, the off-diagonal long-range order is directly reflected in the asymptotic behavior of the interferometric signal for long interrogation times. The method also allows to probe the spatial structure of the condensed pairs: the interferometric signal is an oscillating function of the interrogation time in the Bardeen-Cooper-Schrieffer regime; it becomes an overdamped function in the molecular Bose-Einstein condensate regime.  more » « less
Award ID(s):
2110303
PAR ID:
10539433
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
SciPost
Date Published:
Journal Name:
SciPost Physics
Volume:
17
Issue:
1
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of local criticality. We vary the Kondo couplingJ_K J K at fixed doping x. At large positiveJ_K J K , we confirm the expected conventional Luttinger liquid phase with2k_F=\frac{1+x}{2} 2 k F = 1 + x 2 (in units of2\pi 2 π ), an analogue of the heavy Fermi liquid (HFL) in the higher dimension. In theJ_K ≤ 0 J K 0 side, our simulation finds the existence of a fractional Luttinger liquid (LL\star ) phase with2k_F=\frac{x}{2} 2 k F = x 2 , accompanied by a gapless spin mode originating from localized spin moments, which serves as an analogue of the fractional Fermi liquid (FL\star ) phase in higher dimensions. The LL\star phase becomes unstable and transitions to a spin-gapped Luther-Emery (LE) liquid phase at small positiveJ_K J K . Then we mainly focus on the “critical regime” between the LE phase and the LL phase. Approaching the critical point from the spin-gapped LE phase, we often find that the spin gap vanishes continuously, while the spin-spin correlation length in real space stays finite and small. For a certain range of doping, in a point (or narrow region) ofJ_K J K , the dynamical spin structure factor obtained through the time-evolving block decimation (TEBD) simulation shows dispersion-less spin fluctuations in a finite range of momentum space above a small energy scale (around0.035 J 0.035 J ) that is limited by the TEBD accuracy. All of these results are unexpected for a regular gapless phase (or critical point) described by conformal field theory (CFT). Instead, they are more consistent with exotic ultra-local criticality with an infinite dynamical exponentz=+ z = + . The numerical discovery here may have important implications on our general theoretical understanding of the strange metals in heavy fermion systems. Lastly, we propose to simulate the model in a bilayer optical lattice with a potential difference. 
    more » « less
  2. Abstract Two-dimensional electron systems subjected to high transverse magnetic fields can exhibit Fractional Quantum Hall Effects (FQHE). In the GaAs/AlGaAs 2D electron system, a double degeneracy of Landau levels due to electron-spin, is removed by a small Zeeman spin splitting,$$g \mu _B B$$ g μ B B , comparable to the correlation energy. Then, a change of the Zeeman splitting relative to the correlation energy can lead to a re-ordering between spin polarized, partially polarized, and unpolarized many body ground states at a constant filling factor. We show here that tuning the spin energy can produce fractionally quantized Hall effect transitions that include both a change in$$\nu$$ ν for the$$R_{xx}$$ R xx minimum, e.g., from$$\nu = 11/7$$ ν = 11 / 7 to$$\nu = 8/5$$ ν = 8 / 5 , and a corresponding change in the$$R_{xy}$$ R xy , e.g., from$$R_{xy}/R_{K} = (11/7)^{-1}$$ R xy / R K = ( 11 / 7 ) - 1 to$$R_{xy}/R_{K} = (8/5)^{-1}$$ R xy / R K = ( 8 / 5 ) - 1 , with increasing tilt angle. Further, we exhibit a striking size dependence in the tilt angle interval for the vanishing of the$$\nu = 4/3$$ ν = 4 / 3 and$$\nu = 7/5$$ ν = 7 / 5 resistance minima, including “avoided crossing” type lineshape characteristics, and observable shifts of$$R_{xy}$$ R xy at the$$R_{xx}$$ R xx minima- the latter occurring for$$\nu = 4/3, 7/5$$ ν = 4 / 3 , 7 / 5 and the 10/7. The results demonstrate both size dependence and the possibility, not just of competition between different spin polarized states at the same$$\nu$$ ν and$$R_{xy}$$ R xy , but also the tilt- or Zeeman-energy-dependent- crossover between distinct FQHE associated with different Hall resistances. 
    more » « less
  3. Abstract A method for modelling the prompt production of molecular states using the hadronic rescattering framework of the general-purpose Pythia event generator is introduced. Production cross sections of possible exotic hadronic molecules via hadronic rescattering at the LHC are calculated for the$$\chi _{c1}(3872)$$ χ c 1 ( 3872 ) resonance, a possible tetraquark state, as well as three possible pentaquark states,$$P_c^+(4312)$$ P c + ( 4312 ) ,$$P_c^+(4440)$$ P c + ( 4440 ) , and$$P_c^+(4457)$$ P c + ( 4457 ) . For the$$P_c^+$$ P c + states, the expected cross section from$$\Lambda _b$$ Λ b decays is compared to the hadronic-rescattering production. The$$\chi _{c1}(3872)$$ χ c 1 ( 3872 ) cross section is compared to the fiducial$$\chi _{c1}(3872)$$ χ c 1 ( 3872 ) cross-section measurement by LHCb and found to contribute at a level of$${\mathcal {O}({1\%})}$$ O ( 1 % ) . Finally, the expected yields of$$\mathrm {P_c^{+}}$$ P c + production from hadronic rescattering during Run 3 of LHCb are estimated. The prompt background is found to be significantly larger than the prompt$$\mathrm {P_c^{+}}$$ P c + signal from hadronic rescattering. 
    more » « less
  4. A<sc>bstract</sc> A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair ($$ \textrm{b}\overline{\textrm{b}} $$ b b ¯ ) is presented using proton-proton collision data recorded by the CMS experiment at$$ \sqrt{s} $$ s = 13 TeV and corresponding to an integrated luminosity of 90.8 fb−1. Treating the gluon-gluon fusion process as a background and constraining its rate to the value expected in the standard model (SM) within uncertainties, the signal strength of the VBF process, defined as the ratio of the observed signal rate to that predicted by the SM, is measured to be$$ {\mu}_{\textrm{Hb}\overline{\textrm{b}}}^{\textrm{qqh}}={1.01}_{-0.46}^{+0.55} $$ μ Hb b ¯ qqh = 1.01 0.46 + 0.55 . The VBF signal is observed with a significance of 2.4 standard deviations relative to the background prediction, while the expected significance is 2.7 standard deviations. Considering inclusive Higgs boson production and decay into bottom quarks, the signal strength is measured to be$$ {\mu}_{\textrm{Hb}\overline{\textrm{b}}}^{\textrm{incl}.}={0.99}_{-0.41}^{+0.48} $$ μ Hb b ¯ incl . = 0.99 0.41 + 0.48 , corresponding to an observed (expected) significance of 2.6 (2.9) standard deviations. 
    more » « less
  5. Abstract CUPID, the CUORE Upgrade with Particle Identification, is a next-generation experiment to search for neutrinoless double beta decay ($$0\mathrm {\nu \beta \beta }$$ 0 ν β β ) and other rare events using enriched Li$$_{2}$$ 2 $$^{100}$$ 100 MoO$$_{4}$$ 4 scintillating bolometers. It will be hosted by the CUORE cryostat located at the Laboratori Nazionali del Gran Sasso in Italy. The main physics goal of CUPID is to search for$$0\mathrm {\nu \beta \beta }$$ 0 ν β β of$$^{100}$$ 100 Mo with a discovery sensitivity covering the full neutrino mass regime in the inverted ordering scenario, as well as the portion of the normal ordering regime with lightest neutrino mass larger than 10 meV. With a conservative background index of 10$$^{-4}$$ - 4  cts$$/($$ / ( keV$$\cdot $$ · kg$$\cdot $$ · yr$$)$$ ) , 240 kg isotope mass, 5 keV FWHM energy resolution at 3 MeV and 10 live-years of data taking, CUPID will have a 90% C.L. half-life exclusion sensitivity of$$1.8\cdot 10^{27}$$ 1.8 · 10 27  yr, corresponding to an effective Majorana neutrino mass ($$m_{\beta \beta }$$ m β β ) sensitivity of 9–15 meV, and a$$3\sigma $$ 3 σ discovery sensitivity of$$1\cdot 10^{27}$$ 1 · 10 27  yr, corresponding to an$$m_{\beta \beta }$$ m β β range of 12–21 meV. 
    more » « less