skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental Demonstration of Field-Free STT-Assisted SOT-MRAM (SAS-MRAM) with Four Bits per SOT Programming Line
Award ID(s):
2328804 2314591
PAR ID:
10539449
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Electron Device Letters
ISSN:
0741-3106
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While magnetoresistive random-access memory (MRAM) stands out as a leading candidate for embedded nonvolatile memory and last-level cache applications, its endurance is compromised by substantial self-heating due to the high programming current density. The effect of self-heating on the endurance of the magnetic tunnel junction (MTJ) has primarily been studied in spin-transfer torque (STT)-MRAM. Here, we analyze the transient temperature response of two-terminal spin–orbit torque (SOT)-MRAM with a 1 ns switching current pulse using electro-thermal simulations. We estimate a peak temperature range of 350–450 °C in 40 nm diameter MTJs, underscoring the critical need for thermal management to improve endurance. We suggest several thermal engineering strategies to reduce the peak temperature by up to 120 °C in such devices, which could improve their endurance by at least a factor of 1000× at 0.75 V operating voltage. These results suggest that two-terminal SOT-MRAM could significantly outperform conventional STT-MRAM in terms of endurance, substantially benefiting from thermal engineering. These insights are pivotal for thermal optimization strategies in the development of MRAM technologies. 
    more » « less
  2. In this work, we present GraphS architecture, which transforms current Spin Orbit Torque Magnetic Random Access Memory (SOT-MRAM) to massively parallel computational units capable of accelerating graph processing applications. GraphS can be leveraged to greatly reduce energy consumption dealing with underlying adjacency matrix computations, eliminating unnecessary off-chip accesses and providing ultra-high internal bandwidth. The device-to-architecture co-simulation for three social network data-sets indicate roughly 3.6X higher energy efficiency and 5.3X speed-up over recent ReRAM crossbar. It achieves ~4X higher energy-efficiency and 5.1X speed-up over recent processing-in-DRAM acceleration methods. 
    more » « less
  3. null (Ed.)
    In this work, we review two alternative Processing-in-Memory (PIM) accelerators based on Spin-Orbit-Torque Magnetic Random Access Memory (SOT-MRAM) to execute DNA short read alignment based on an optimized and hardware-friendly alignment algorithm. We first discuss the reconstruction of the existing sequence alignment algorithm based on BWT and FM-index such that it can be fully implemented leveraging PIM functions. We then transform SOT-MRAM array to a potential computational memory by presenting two different reconfigurable sense amplifiers to accelerate the reconstructed alignment-in-memory algorithm. The cross-layer simulation results show that such PIM platforms are able to achieve a nearly ten-fold and two-fold increases in throughput/power/area measure compared with recent ASIC and processing-in-ReRAM designs, respectively. 
    more » « less