Modern integrated circuits have active components on the order of nanometers. However, optical devices are often limited by diffraction effects with dimensions measured in wavelengths. Nanoscale photodetectors capable of converting light into electrical signals are necessary for the miniaturization of optoelectronic applications. Strong coupling of light and free electrons in plasmonic nanostructures overcomes these limitations by confining light into sub-wavelength volumes with intense local electric fields. Localized electric fields are intensified at nanorod ends and in nanogap regions between nanostructures. Hot carriers generated within these high-field regions from nonradiative decay of surface plasmons can be injected into the conduction band of adjacent semiconductors, enabling sub-bandgap photodetection. The optical properties of these plasmonic photodetectors can be tuned by modifying antenna materials and geometric parameters like size, thickness, and shape. Electrical interconnects provide connectivity to convert light into electrical signals. In this work, interconnected nanogap antennas fabricated with 35 nm gaps are encapsulated with ALD-deposited [Formula: see text], enabling photodetection via Schottky barrier junctions. Photodetectors with high responsivity (12[Formula: see text][Formula: see text]A/mW) are presented for wavelengths below the bandgap of [Formula: see text] (3.2[Formula: see text]eV). These plasmonic nanogap antennas are sub-wavelength, tunable photodetectors with sub-bandgap responsivity for a broad spectral range.
more »
« less
Plasmonic metagrating-interlayer semiconductor (PMIS) structure for enhancing photodetection via hot-electron injection
Internal photoemission or hot-electron injection (HEJ) occurring at the metal-semiconductor (MS) Schottky interface has shown great promise in sub-bandgap photodetection and photovoltaics. In this paper, we put forward a plasmonic metagrating-interlayer-semiconductor (PMIS) structure that can significantly enhance the photon-to-electron conversion efficiency of HEJ-based optoelectronic devices. Thanks to the effect of image force-induced barrier lowering, a metal-interlayer-semiconductor (MIS) heterojunction with an ultrathin 2D material interlayer can considerably facilitate the hot electron transport across the Schottky barrier, resulting in a high internal quantum efficiency (IQE). Meanwhile, nanopatterning the MIS heterojunction into the plasmonic metagrating enables high optical absorption such that the device’s external quantum efficiency (EQE) can be nearly equal to its IQE. In addition, this device can be wavelength- and polarization-selective by tailoring the geometry and dimensions of plasmonic metagrating, thereby paving a promising path toward bandgap-independent photodetection, energy harvesting, and photocatalysis.
more »
« less
- Award ID(s):
- 2210977
- PAR ID:
- 10540101
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 32
- Issue:
- 19
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 33974
- Size(s):
- Article No. 33974
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plasmonic hot‐electron‐assisted control of emission intensities and dynamics of CdSe/ZnS and infrared PbS quantum dots are studied. This is done by exploring the impact of Au/Si and Ag/Si Schottky junctions on the decay rates of such quantum dots when these junctions are placed in close vicinity of a Si/Al oxide charge barrier, forming metal‐oxide plasmonic metafilms. Such structures are used to investigate how metal‐dependent distributions of hot electrons and their capture via Schottky junctions can lead to suppression of the defect environments of quantum dots, offering a novel platform wherein off‐resonant (non‐Purcell) plasmonic processes are used to control exciton dynamics. These results show that Ag metafilms can enhance the emission of CdSe/ZnS quantum dots and elongate their lifetimes more than Au metafilms. This highlights the more efficient nature of Ag/Si Schottky junctions for hot electron excitation and capture. These results also show that such junctions can significantly suppress the nonradiative decay rates of PbS quantum dots at frequencies far from the plasmon resonances. These results demonstrate a field‐effect passivation of quantum dot defects via entrapment of hot electrons and control of emission intensities and dynamics of quantum dots via the nearly frequency‐independent electrostatic field of such electrons.more » « less
-
Lateral Schottky or heterojunction rectifiers were irradiated with 10 MeV protons and neutrons. For proton irradiation, the forward current of both types of rectifiers decreased by approximately an order of magnitude, with a corresponding increase in on-state resistance. The resultant on/off ratio improved after irradiation because of the larger decrease in reverse current compared to forward current. Both types of rectifiers displayed a shift in forward current and RON curves to lower voltages after irradiation. This could be due to defects created by neutron irradiation introducing deep energy levels within the bandgap of AlN. These deep levels can trap charge carriers, reducing their mobility and increasing the on-state resistance. Transmission electron microscopy showed disorder created at the AlN/NiO interface by neutron irradiation. TCAD simulation was used to study the effects of irradiation with both protons and neutrons. The results confirmed that the irradiation caused a significant reduction in electron concentration and a small increase in the recombination rate. Neutron irradiation can also introduce interface states at the metal or oxide-semiconductor junction of the rectifier. These interface states can modify the effective Schottky barrier height, affecting the forward voltage drop and on-state resistance.more » « less
-
null (Ed.)Plasmonic nanostructures possess broadly tunable optical properties with catalytically active surfaces. They offer new opportunities for achieving efficient solar-to-chemical energy conversion. Plasmonic metal–semiconductor heterostructures have attracted heightened interest due to their capability of generating energetic hot electrons that can be collected to facilitate chemical reactions. In this article, we present a detailed survey of recent examples of plasmonic metal–semiconductor heterostructures for hot-electron-driven photochemistry, including plasmonic metal–oxide, plasmonic metal–two-dimensional materials, and plasmonic metal–metal–organic frameworks. We conclude with a discussion on the remaining challenges in the field and an outlook regarding future opportunities for designing high-performance plasmonic metal–semiconductor heterostructures for photochemistry.more » « less
-
Plasmonic nanostructures and metasurfaces are appealing hosts for investigation of novel optical devices and exploration of new frontiers in physical/optical processes and materials research. Recent studies have shown that these structures hold the promise of greater control over the optical and electronic properties of quantum emitters, offering a unique horizon for ultra-fast spin-controlled optical devices, quantum computation, laser systems, and sensitive photodetectors. In this Perspective, we discuss how heterostructures consisting of metal oxides, metallic nanoantennas, and dielectrics can offer a material platform wherein one can use the decay of plasmons and their near fields to passivate the defect sites of semiconductor quantum dots while enhancing their radiative decay rates. Such a platform, called functional metal-oxide plasmonic metasubstrates (FMOPs), relies on formation of two junctions at very close vicinity of each other. These include an Au/Si Schottky junction and an Si/Al oxide charge barrier. Such a double junction allows one to use hot electrons to generate a field-passivation effect, preventing migration of photo-excited electrons from quantum dots to the defect sites. Prospects of FMOP, including impact of enhancement exciton–plasmon coupling, collective transport of excitation energy, and suppression of quantum dot fluorescence blinking, are discussed.more » « less
An official website of the United States government
