skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Homotopy, homology, and persistent homology using closure spaces
Abstract. We develop persistent homology in the setting of filtrations of (Cˇech) closure spaces. Examples of filtrations of closure spaces include metric spaces, weighted graphs, weighted directed graphs, and filtrations of topological spaces. We use various products and intervals for closure spaces to obtain six homotopy theories, six cubical singular homology theories, and three simplicial singular homology theories. Applied to filtrations of closure spaces, these homology theories produce persistence modules. We extend the definition of Gromov-Hausdorff distance from metric spaces to filtrations of closure spaces and use it to prove that any persistence module obtained from a homotopy-invariant functor on closure spaces is stable.  more » « less
Award ID(s):
1764406
PAR ID:
10540215
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Applied and Computational Topology,
Date Published:
Journal Name:
Journal of Applied and Computational Topology
ISSN:
2367-1726
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We develop a topological analysis of robust traffic pace patterns using persistent homology. We develop Rips filtrations, parametrized by pace, for a symmetrization of traffic pace along the (naturally) directed edges in a road network. Our symmetrization is inspired by recent work of Turner (2019Algebr. Geom. Topol.191135–1170). Our goal is to construct barcodes which help identify meaningful pace structures, namely connected components or ‘rings’. We develop a case study of our methods using datasets of Manhattan and Chengdu traffic speeds. In order to cope with the computational complexity of these large datasets, we develop an auxiliary application of the directed Louvain neighborhood-finding algorithm. We implement this as a preprocessing step prior to our main persistent homology analysis in order to coarse-grain small topological structures. We finally compute persistence barcodes on these neighborhoods. The persistence barcodes have a metric structure which allows us to both qualitatively and quantitatively compare traffic networks. As an example of the results, we find robust connected pace structures near Midtown bridges connecting Manhattan to the mainland. 
    more » « less
  2. null (Ed.)
    Let [Formula: see text] be a group acting properly and by isometries on a metric space [Formula: see text]; it follows that the quotient or orbit space [Formula: see text] is also a metric space. We study the Vietoris–Rips and Čech complexes of [Formula: see text]. Whereas (co)homology theories for metric spaces let the scale parameter of a Vietoris–Rips or Čech complex go to zero, and whereas geometric group theory requires the scale parameter to be sufficiently large, we instead consider intermediate scale parameters (neither tending to zero nor to infinity). As a particular case, we study the Vietoris–Rips and Čech thickenings of projective spaces at the first scale parameter where the homotopy type changes. 
    more » « less
  3. null (Ed.)
    Abstract In this paper, we introduce and study representation homology of topological spaces, which is a natural homological extension of representation varieties of fundamental groups. We give an elementary construction of representation homology parallel to the Loday–Pirashvili construction of higher Hochschild homology; in fact, we establish a direct geometric relation between the two theories by proving that the representation homology of the suspension of a (pointed connected) space is isomorphic to its higher Hochschild homology. We also construct some natural maps and spectral sequences relating representation homology to other homology theories associated with spaces (such as Pontryagin algebras, $${{\mathbb{S}}}^1$$-equivariant homology of the free loop space, and stable homology of automorphism groups of f.g. free groups). We compute representation homology explicitly (in terms of known invariants) in a number of interesting cases, including spheres, suspensions, complex projective spaces, Riemann surfaces, and some 3-dimensional manifolds, such as link complements in $${\mathbb{R}}^3$$ and the lens spaces $ L(p,q) $. In the case of link complements, we identify the representation homology in terms of ordinary Hochschild homology, which gives a new algebraic invariant of links in $${\mathbb{R}}^3$$. 
    more » « less
  4. We introduce harmonic persistent homology spaces for filtrations of finite simplicial complexes. As a result we can associate concrete subspaces of cycles to each bar of the barcode of the filtration. We prove stability of the harmonic persistent homology subspaces, as well as the subspaces associated to the bars of the barcodes, under small perturbations of functions defining them. We relate the notion of ``essential simplices'' introduced in an earlier work to identify simplices which play a significant role in the birth of a bar, with that of harmonic persistent homology. We prove that the harmonic representatives of simple bars maximizes the ``relative essential content'' amongst all representatives of the bar, where the relative essential content is the weight a particular cycle puts on the set of essential simplices. \footnote{An extended abstract of the paper appeared in the Proceedings of the IEEE Symposium on the Foundations of Computer Science, 2021.} 
    more » « less
  5. We study the persistent homology of both functional data on compact topological spaces and structural data presented as compact metric measure spaces. One of our goals is to define persistent homology so as to capture primarily properties of the shape of a signal, eliminating otherwise highly persistent homology classes that may exist simply because of the nature of the domain on which the signal is defined. We investigate the stability of these invariants using metrics that downplay regions where signals are weak. The distance between two signals is small if they exhibit high similarity in regions where they are strong, regardless of the nature of their full domains, in particular allowing different homotopy types. Consistency and estimation of persistent homology of metric measure spaces from data are studied within this framework. We also apply the methodology to the construction of multi-scale topological descriptors for data on compact Riemannian manifolds via metric relaxations derived from the heat kernel. 
    more » « less