skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 400Gbps benchmark of XRootD HTTP-TPC
Due to the increased demand of network traffic expected during the HL-LHC era, the T2 sites in the USA will be required to have 400Gbps of available bandwidth to their storage solution. With the above in mind we are pursuing a scale test of XRootD software when used to perform Third Party Copy transfers using the HTTP protocol. Our main objective is to understand the possible limitations in the software stack to achieve the target transfer rate; to that end we have set up a testbed of multiple XRootD servers in both UCSD and Caltech which are connected through a dedicated link capable of 400 Gbps end-to-end. Building upon our experience deploying containerized XRootD servers, we use Kubernetes to easily deploy and test different configurations of our testbed. In this work, we will present our experience doing these tests and the lessons learned.  more » « less
Award ID(s):
2030508
PAR ID:
10540253
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
De_Vita, R; Espinal, X; Laycock, P; Shadura, O
Publisher / Repository:
CHEP 2023
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
295
ISSN:
2100-014X
Page Range / eLocation ID:
01001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)
    This work presents the design and implementation of an Open Storage System plugin for XRootD, utilizing Named Data Networking (NDN). This represents a significant step in integrating NDN, a prominent future Internet architecture, with the established data management systems within CMS. We show that this integration enables XRootD to access data in a location transparent manner, reducing the complexity of data management and retrieval. Our approach includes the creation of the NDNc software library, which bridges the existing NDN C++ library with the high-performance NDN-DPDK data-forwarding system. This paper outlines the design of the plugin and preliminary results of data transfer tests using both internal and external 100 Gbps testbed. 
    more » « less
  2. Web-based speed tests are popular among end-users for measuring their network performance. Thousands of measurement servers have been deployed in diverse geographical and network locations to serve users worldwide. However, most speed tests have opaque methodologies, which makes it difficult for researchers to interpret their highly aggregated test results, let alone leverage them for various studies. In this paper, we propose WebTestKit, a unified and configurable framework for facilitating automatic test execution and cross-layer analysis of test results for five major web-based speed test platforms. Capturing only packet headers of traffic traces, WebTestKit performs in-depth analysis by carefully extracting HTTP and timing information from test runs. Our testbed experiments showed WebTestKit is lightweight and accurate in interpreting encrypted measurement traffic. We applied WebTestKit to compare the use of HTTP requests across speed tests and investigate the root causes for impeding the accuracy of latency measurements, which play a vital role in test server selection and throughput estimation. 
    more » « less
  3. This paper focuses on COSMOS ś Cloud enhanced Open Software defined MObile wireless testbed for city-Scale deployment. The COSMOS testbed is being deployed in West Harlem (New York City) as part of the NSF Platforms for Advanced Wireless Research (PAWR) program. It will enable researchers to explore the technology łsweet spotž of ultra-high bandwidth and ultra-low latency in the most demanding real-world environment. We describe the testbed’s architecture, the design and deployment challenges, and the experience gained during the design and pilot deployment. Specifically, we describe COSMOS’ computing and network architectures, the critical building blocks, and its programmability at different layers. The building blocks include software-defined radios, 28 GHz millimeter-wave phased array modules, optical transport network, core and edge cloud, and control and management software. We describe COSMOS’ deployment phases in a dense urban environment, the research areas that could be studied in the testbed, and specific example experiments. Finally, we discuss our experience with using COSMOS as an educational tool. 
    more » « less
  4. null (Ed.)
    Access control and information flow are the two building blocks in the design of secure software. Of the two, access control seems ubiquitous, being widely used in operating systems, databases, firewalls, servers, web applications, and so on. The successes of information flow seem less obvious, and its benefits and potential underappreciated. Yet, when it comes to defending against malicious code, access control based defenses have proved susceptible to evasion, or they end up being so restrictive as to interfere with legitimate use. In this talk, I will argue that defenses based on information flow can be more discerning, as they utilize not only the operations performed but also their context, e.g., whether malicious actors could be exerting control over these operation or their key arguments. I will then describe successful applications of information flow to defend against every stage of a cyber attack campaign, including: (a) exploit mitigation for a wide range of software vulnerabilities, (b) malware containment across diverse OSes, including Linux, BSD, and Windows XP through Windows 10, and (c) attack campaign reconstruction, where we achieve a five to six orders of magnitude data reduction by applying our techniques. 
    more » « less
  5. This paper presents Virginia Tech’s wireless testbed supporting research on long-term evolution (LTE) signaling and radio frequency (RF) spectrum coexistence. LTE is continuously refined and new features released. As the communications contexts for LTE expand, new research problems arise and include operation in harsh RF signaling environments and coexistence with other radios. Our testbed provides an integrated research tool for investigating these and other research problems; it allows analyzing the severity of the problem, designing and rapidly prototyping solutions, and assessing them with standard-compliant equipment and test procedures. The modular testbed integrates general-purpose software-defined radio hardware, LTE-specific test equipment, RF components, free open-source and commercial LTE software, a configurable RF network and recorded radar waveform samples. It supports RF channel emulated and over-the-air radiated modes. The testbed can be remotely accessed and configured. An RF switching network allows for designing many different experiments that can involve a variety of real and virtual radios with support for multiple-input multiple-output (MIMO) antenna operation. We present the testbed, the research it has enabled and some valuable lessons that we learned and that may help designing, developing, and operating future wireless testbeds. 
    more » « less