skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on September 6, 2025

Title: CLARA+: dual machine learning optimized resource assignment for translucent SDM-EONs
Space division multiplexed elastic optical networks (SDM-EONs) enhance service provisioning by offering increased fiber capacity through the use of flexible spectrum allocation, multiple spatial modes, and efficient modulations. In these networks, the problem of allocating resources for connections involves assigning routes, modulations, cores, and spectrum (RMCSA). However, the presence of intercore crosstalk (XT) between ongoing connections on adjacent cores can degrade signal transmission, necessitating proper handling during resource assignment. The use of multiple modulations in translucent optical networks presents a challenge in balancing spectrum utilization and XT accumulation. In this paper, we propose a dual-optimized RMCSA algorithm called the Capacity Loss Aware Resource Assignment Algorithm (CLARA+), which optimizes network capacity utilization to improve resource availability and network performance. A two-step machine-learning-enabled optimization is used to improve the resource allocations by balancing the tradeoff between spectrum utilization and XT accumulation with the help of feature extraction from the network. Extensive simulations demonstrate that CLARA+ significantly reduces bandwidth blocking probability and enhances resource utilization across various scenarios. We show that our strategy applied to a few algorithms from the literature improves the bandwidth blocking probability by up to three orders of magnitude. The algorithm effectively balances spectrum utilization and XT accumulation more efficiently compared to existing algorithms in the literature.  more » « less
Award ID(s):
1818858 2210343
PAR ID:
10540336
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of Optical Communications and Networking
Volume:
16
Issue:
10
ISSN:
1943-0620; JOCNBB
Format(s):
Medium: X Size: Article No. F1
Size(s):
Article No. F1
Sponsoring Org:
National Science Foundation
More Like this
  1. A fine-grained flexible frequency grid for elastic optical transmission and space division multiplexing in conjunction with spectrally efficient modulations is an excellent solution to the coming capacity crunch. In space division multiplexed elastic optical networks (SDM-EONs), the routing, modulation, core, and spectrum assignment (RMCSA) problem is an important lightpath resource assignment problem. Intercore cross talk (XT) reduces the quality of parallel transmissions on separate cores, and the RMCSA algorithm must ensure that XT requirements are satisfied while optimizing network performance. There is an indirect trade-off between spectrum utilization and XT tolerance; while higher modulations are more spectrum efficient, they are also less tolerant of XT since they permit fewer connections on neighboring cores on the overlapping spectra. Numerous XT-aware RMCSA algorithms restrict the number of litcores, cores on which overlapping spectra are occupied, to guarantee XT constraints are met. In this paper, we present a machine learning (ML) aided threshold optimization strategy that enhances the performance ofanyRMCSA algorithm for any network model. We show that our strategy applied to a few algorithms from the literature improves the bandwidth blocking probability by up to three orders of magnitude. We also present the RMCSA algorithm called spectrum-wastage-avoidance-based resource allocation (SWARM), which is based on the idea of spectrum wastage due to spectrum requirements and XT constraints. We note that SWARM not only outperforms other RMCSA algorithms, but also its ML-optimized variant outperforms other ML-optimized RMCSA algorithms. 
    more » « less
  2. Service provisioning can be enhanced with spectrally spatially flexible optical networks (SS-FONs) with multicore fibers; however, intercore crosstalk (XT) is a dominant impairment that complicates the problem of maintaining the quality of transmission (QoT) and resource allocation. The selection of modulation formats (MFs), due to their unique XT sensitivities, further increases the complexity. The routing, modulation, core, and spectrum assignment (RMCSA) problem must select the resources carefully to exploit the available capacity while meeting the desired QoT. In this paper, we propose an RMCSA algorithm called the tridental resource assignment (TRA) algorithm for transparent SS-FONs, and its variant, translucency-aware TRA (TaTRA), for translucent SS-FONs. TRA balances three different factors that affect network performance under dynamic resource allocation. We consider translucent networks with flexible regeneration and with and without modulation and spectrum conversion. Our resource assignment approach includes both an offline network planning component to calculate path priorities and an online/dynamic provisioning component to allocate resources. Extensive simulation experiments performed in realistic network scenarios indicate that TRA and TaTRA significantly reduce the bandwidth blocking probability by several orders of magnitude in some cases. 
    more » « less
  3. Flexible grid networks need rigorous resource planning to avoid network over-dimensioning and resource over-provisioning. The network must provision the hardware and spectrum resources statically, even for dynamic random bandwidth demands, due to the infrastructure of flexible grid networks, hardware limitations, and reconfiguration speed of the control plane. We propose a flexible online–offline probabilistic (FOOP) algorithm for the static spectrum assignment of random bandwidth demands. The FOOP algorithm considers the probabilistic nature of random bandwidth demands and balances hardware and control plane pressures with spectrum assignment efficiency. The FOOP algorithm uses the probabilistic spectrum Gaussian noise (PSGN) model to estimate the physical-layer impairment (PLI) for random bandwidth traffic. Compared to a benchmark spectrum assignment algorithm and a widely applied PLI estimation model, the proposed FOOP algorithm using the PSGN model saves up to 49% of network resources. 
    more » « less
  4. A traditional wavelength-division multiplexed (WDM) backbone network with its rigid features is unsuitable for emerging diverse and high bitrate (400 Gb/s, 1 Tb/s) traffic needs. Flexible solutions employ new technologies such as bandwidth-variable optical cross connects (BV-OXC) with liquid crystal (LCoS) wavelength-selective switches (WSS), sliceable bandwidth-variable transponders (SBVT), etc. in a flex-grid network. Flex-grid network operates on variable spectral granularities (e.g., 12.5 GHz), and higher modulation formats (quadrature amplitude modulation). However, a greenfield deployment of flex-grid technologies may not be practical, due to cost of technology and usability. This leads to a brown-field network where both fixed-grid and flex-grid technologies co-exist with seamless interoperability. Thus traditional traffic routing and resource allocation techniques need to evolve in a mixed-grid infrastructure. Our study considers the dynamic routing and spectrum assignment (RSA) problem in a fixed/flex-grid co-existing optical network. It provisions routes for dynamic, heterogeneous traffic, ensuring maximum spectrum utilization and minimum blocking. 
    more » « less
  5. We investigate the problem of dynamic routing and spectrum assignment for advance reservation anycast requests using a novel algorithm called Delayed Spectrum Allocation (DSA) which delays allocation of resources until immediately before transmission begins. We evaluate the flexible window STSD (demands that specify start-time and duration) to further improve request blocking. Through extensive simulation results, we show that anycast with flexible STSD using DSA approach can significantly reduce blocking probability of anycast and unicast requests compared to traditional Immediate Spectrum Allocation (ISA). The improvement is up to 50 percent in unicast traffic and even higher in anycasting. We also propose balanced routing for anycast algorithms to reduce the blocking. 
    more » « less