A search for pair production of scalar and vector leptoquarks (LQs) each decaying to a muon and a bottom quark is performed using proton-proton collision data collected at with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of . No excess above standard model expectation is observed. Scalar (vector) LQs with masses less than 1810 (2120) GeV are excluded at 95% confidence level, assuming a 100% branching fraction of the LQ decaying to a muon and a bottom quark. These limits represent the most stringent to date. © 2024 CERN, for the CMS Collaboration2024CERN
more »
« less
Large extra dimensions from higher-dimensional inflation
We propose the possibility that compact extra dimensions can obtain large size by higher-dimensional inflation, relating the weakness of the actual gravitational force to the size of the observable Universe. Solution to the horizon problem implies that the fundamental scale of gravity is smaller than , which can be realized in a braneworld framework for any number of extra dimensions. However, requirement of an (approximate) flat power spectrum of primordial density fluctuations consistent with present observations makes this simple proposal possible only for one extra dimension at around the micron scale. After the end of five-dimensional inflation, the radion modulus can be stabilized at a vacuum with positive energy of the order of the present dark energy scale. An attractive possibility is based on the contribution to the Casimir energy of right-handed neutrinos with a mass at a similar scale. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2112527
- PAR ID:
- 10540391
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 109
- Issue:
- 10
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is . This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using of proton-proton collision data at collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from 0.3 to 0.9 GeV is excluded at 95% confidence level, with a maximum reach of approximately 170 GeV in the Higgsino mass. © 2024 CERN, for the ATLAS Collaboration2024CERNmore » « less
-
Searches for pair-produced multijet signatures using data corresponding to an integrated luminosity of of proton-proton collisions at are presented. A data scouting technique is employed to record events with low jet scalar transverse momentum sum values. The electroweak production of particles predicted in -parity violating supersymmetric models is probed for the first time with fully hadronic final states. This is the first search for prompt hadronically decaying mass-degenerate higgsinos, and extends current exclusions on -parity violating top squarks and gluinos. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of of proton-proton collision data at , collected in 2016–2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large ’t Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics. With no observed excess of events over the standard model expectation, limits are set on the cross section for production via gluon fusion of a scalar mediator with SUEP-like decays. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
Metric perturbations induced by ultralight dark matter (ULDM) fields have long been identified as a potential target for pulsar timing array (PTA) observations. Previous works have focused on the coherent oscillation of metric perturbations at the characteristic frequency set by the ULDM mass. In this work, we show that ULDM fields source low-frequency stochastic metric fluctuations and that these low-frequency fluctuations can produce distinctive detectable signals in PTA data. Using the NANOGrav 12.5-yr dataset and synthetic datasets mimicking present and future PTA capabilities, we show that the current and future PTA observations provide the strongest probe of ULDM density within the Solar System for masses in the range of . Published by the American Physical Society2024more » « less
An official website of the United States government

