Quantifying physical mechanisms driving sea-level change—including global mean sea level (GMSL) and regional-to-local components (that is, sea-level budget)—is essential for reliable future projections and effective coastal management1,2. Although previous research has attempted to resolve China’s sea-level budget from the 1950s3,4, these studies capture short timescales and lack the long-term context necessary to fully assess modern sea-level rise in southeastern China5—one of the world’s most densely populated regions with immense socioeconomic importance6. Here we show that GMSL followed three distinct stages from 11,700 years before present (BP) to the modern day: (1) rapid early Holocene rise driven by the deglacial melt of land ice; (2) 4,000 years of stability from around 4200 BP to the mid-nineteenth century when regional processes dominated sea-level change; and (3) accelerating rise from the mid-nineteenth century. Our results arise from spatiotemporal hierarchical modelling of geological sea-level proxies and tide gauge data to produce site-specific sea-level budget estimates with uncertainty quantification. It is extremely likely (P ≥ 0.95) that the GMSL rise rate since 1900 (1.51 ± 0.16 mm year−1, 1σ) has exceeded any century over at least the past four millennia. Moreover, our analysis indicates that at least 94% of rapid modern urban subsidence is attributable to anthropogenic activities, with localized subsidence rates often exceeding GMSL rise. Such concurrent acceleration of global sea-level rise and rapid localized subsidence has not been observed in our Holocene geological record.
more »
« less
Reconstruction of hourly coastal water levels and counterfactuals without sea level rise for impact attribution
Abstract. Rising seas are a threat to human and natural systems along coastlines. The relation between global warming and sea level rise is established, but the quantification of impacts of historical sea level rise on a global scale is largely absent. To foster such quantification, here we present a reconstruction of historical hourly (1979–2015) and monthly (1900–2015) coastal water levels and a corresponding counterfactual without long-term trends in sea level. The dataset pair allows for impact attribution studies that quantify the contribution of sea level rise to observed changes in coastal systems following the definition of the Intergovernmental Panel on Climate Change (IPCC). Impacts are ultimately caused by water levels that are relative to the local land height, which makes the inclusion of vertical land motion a necessary step. Also, many impacts are driven by sub-daily extreme water levels. To capture these aspects, the factual data combine reconstructed geocentric sea level on a monthly timescale since 1900, vertical land motion since 1900 and hourly storm-tide variations since 1979. The inclusion of observation-based vertical land motion brings the trends of the combined dataset closer to tide gauge records in most cases, but outliers remain. Daily maximum water levels get in closer agreement with tide gauges through the inclusion of intra-annual ocean density variations. The counterfactual data are derived from the factual data through subtraction of the quadratic trend. The dataset is made available openly through the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) at https://doi.org/10.48364/ISIMIP.749905 (Treu et al., 2023a).
more »
« less
- PAR ID:
- 10541230
- Publisher / Repository:
- EGU
- Date Published:
- Journal Name:
- Earth System Science Data
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 1866-3516
- Page Range / eLocation ID:
- 1121 to 1136
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Increasing exposure to coastal flood hazards will potentially induce an enormous socio‐economic toll on vulnerable communities. To accurately characterize the hazard, we must consider both natural water level variability and climate change‐induced sea‐level rise. In this study, we develop a paleo‐proxy‐based reconstruction of coastal flood events over the last 500 yr to capture natural water level variability and superimpose that reconstruction onto expected sea‐level rise to explore interannual and multidecadal variability in plausible future coastal flood risk. We first develop reconstructions of leading principal components (PCs) of sea surface temperature anomalies from 1500 CE onwards, using tree‐ring, coral, and sclerosponge chronology‐based El Niño Southern Oscillation reconstructions as predictors in a wavelet autoregression model. These reconstructions of PCs are then used in a stochastic water level emulator to develop ensemble simulations of hourly still water levels (SWLs) in the San Francisco Bay. The emulator accounts for multiple relevant processes, including monthly mean sea level (MMSL) anomalies, storm surge, and tide, all varying at different timescales. Accounting for natural variability in water levels over 1500–2000 CE increases coastal flood risk beyond that suggested by instrumental records alone. When superimposed on 0.22 m of sea‐level rise (approximately the amount experienced over the previous century), the simulations show that while high tides and large storm surges cause the smaller extreme SWLs, the larger extreme SWLs occur during concurrent high MMSL, high tides, and significant storm surges. Our findings thus highlight the need to consider natural water level variability for coastal adaptation and planning.more » « less
-
Abstract Water levels in deltas and estuaries vary on multiple timescales due to coastal, hydrologic, meteorologic, geologic, and anthropogenic factors. These diverse factors increase the uncertainty of, and may bias, relative sea level rise (RSLR) estimates. Here, we evaluate RSLR in San Francisco Bay and the Sacramento-San Joaquin Delta, USA by applying a physics-based, nonlinear regression to 50 tide gauges that determines the spatially varying controls on daily mean water level for water years 2004–2022. Results show that elevated river flow and pumping (99th percentile) raise water level up to 6 m and lower it up to 0.35 m, respectively, and coastal water level variations are attenuated by 30-60% within the Delta. Strong westerly winds raise water level up to 0.17 m, and tidal-fluvial interaction during spring tides and low discharge raises water level up to 0.15 m. Removal of these interfering factors greatly improves RSLR estimates, narrowing 95% confidence intervals by 89–99% and removing bias due to recent drought. Results show that RSLR is spatially heterogeneous, with rates ranging from − 2.8 to 12.9 mm y-1(95% uncertainties < 1 mm y-1). RSLR also exceeds coastal SLR of 3.3 mm y-1in San Francisco at 85% of stations. Thus, RSLR in the Delta is strongly influenced by local vertical land motion and will likely produce significantly different, location-dependent future flood risk trajectories.more » « less
-
Abstract The U.S. coastlines have experienced rapid increases in occurrences of High Tide Flooding (HTF) during recent decades. While it is generally accepted that relative mean sea level (RMSL) rise is the dominant cause for this, an attribution to individual components is still lacking. Here, we use local sea-level budgets to attribute past changes in HTF days to RMSL and its individual contributions. We find that while RMSL rise generally explains > 84% of long-term increases in HTF days locally, spatial patterns in HTF changes also depend on differences in flooding thresholds and water level characteristics. Vertical land motion dominates long-term increases in HTF, particularly in the northeast, while sterodynamic sea level (SDSL) is most important elsewhere and on shorter temporal scales. We also show that the recent SDSL acceleration in the Gulf of Mexico has led to an increase of 220% in the frequency of HTF events over the last decade.more » « less
-
Abstract Relative sea level rise at tide gauge Galveston Pier 21, Texas, is the combination of absolute sea level rise and land subsidence. We estimate subsidence rates of 3.53 mm/a during 1909–1937, 6.08 mm/a during 1937–1983, and 3.51 mm/a since 1983. Subsidence attributed to aquifer-system compaction accompanying groundwater extraction contributed as much as 85% of the 0.7 m relative sea level rise since 1909, and an additional 1.9 m is projected by 2100, with contributions from land subsidence declining from 30 to 10% over the projection interval. We estimate a uniform absolute sea level rise rate of 1.10 mm ± 0.19/a in the Gulf of Mexico during 1909–1992 and its acceleration of 0.270 mm/a2at Galveston Pier 21 since 1992. This acceleration is 87% of the value for the highest scenario of global mean sea level rise. Results indicate that evaluating this extreme scenario would be valid for resource-management and flood-hazard-mitigation strategies for coastal communities in the Gulf of Mexico, especially those affected by subsidence.more » « less
An official website of the United States government

