skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the Adoption of Research-Based Instructional Strategies in Undergraduate Mathematics with the Teacher Centered Systematic Reform Model
Studies show that Research-Based Instructional Strategies (RBIS) help students learn, however their adoption has been slow. The Teacher Centered Systematic Reform Model (TCRM) is a general model for organizing enablers and barriers to adoption of new teaching methods that includes departmental, personal and teacher thinking factors. We used the TCRM model as a framework to assess the amount of formal lecture reported by 634 mathematics instructors in their undergraduate courses. Regression analyses found that instructors who participated in Project NExT (a professional development workshop) during their early careers were less likely to use lecture than non-participants. Other significant predictors of lecture less included evaluation expectations emphasizing active teaching methods, involvement in equity and diversity efforts, and prior experience with RBIS. Factors with a positive correlational association with lecture included evaluation efforts by departments where lecture was expected. Results confirmed some prior models in different disciplines.  more » « less
Award ID(s):
1821704
PAR ID:
10541260
Author(s) / Creator(s):
; ;
Editor(s):
Cook, S; Katz, B; Moore-Russo, D
Publisher / Repository:
Proceedings of the 26th Annual Conference on Research in Undergraduate Mathematics Education
Date Published:
Page Range / eLocation ID:
905-912
Subject(s) / Keyword(s):
undergraduate education adoption of new teaching practices research-based teaching strategies mathematics education professional development
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Active learning pedagogies are shown to enhance the outcomes of students, particularly in disciplines known for high attrition rates. Despite the demonstrated benefits of active learning, didactic lecture continues to predominate in science, technology, engineering, and mathematics (STEM) courses. Change agents and professional development programs have historically placed emphasis on develop–disseminate efforts for the adoption of research-based instructional strategies (RBIS). With numerous reported barriers and motivators for trying out and adopting active learning, it is unclear to what extent these factors are associated with adoption of RBIS and the effectiveness of change strategies. We present the results of a large-scale, survey-based study of introductory chemistry, mathematics, and physics instructors and their courses in the United States. Herein, we evaluate the association of 17 malleable factors with the tryout and adoption of RBIS. Multilevel logistic regression analyses suggest that several contextual, personal, and teacher thinking factors are associated with different stages of RBIS adoption. These results are also compared with analogous results evaluating the association of these factors with instructors’ time spent lecturing. We offer actionable implications for change agents to provide targeted professional development programming and for institutional leaders to influence the adoption of active learning pedagogies in introductory STEM courses. 
    more » « less
  2. Abstract BackgroundActive learning used in science, technology, engineering, and mathematics (STEM) courses has been shown to improve student outcomes. Nevertheless, traditional lecture-orientated approaches endure in these courses. The implementation of teaching practices is a result of many interrelated factors including disciplinary norms, classroom context, and beliefs about learning. Although factors influencing uptake of active learning are known, no study to date has had the statistical power to empirically test the relative association of these factors with active learning when considered collectively. Prior studies have been limited to a single or small number of evaluated factors; in addition, such studies did not capture the nested nature of institutional contexts. We present the results of a multi-institution, large-scale (N = 2382 instructors;N = 1405 departments;N = 749 institutions) survey-based study in the United States to evaluate 17 malleable factors (i.e., influenceable and changeable) that are associated with the amount of time an instructor spends lecturing, a proxy for implementation of active learning strategies, in introductory postsecondary chemistry, mathematics, and physics courses. ResultsRegression analyses, using multilevel modeling to account for the nested nature of the data, indicate several evaluated contextual factors, personal factors, and teacher thinking factors were significantly associated with percent of class time lecturing when controlling for other factors used in this study. Quantitative results corroborate prior research in indicating that large class sizes are associated with increased percent time lecturing. Other contextual factors (e.g., classroom setup for small group work) and personal contexts (e.g., participation in scholarship of teaching and learning activities) are associated with a decrease in percent time lecturing. ConclusionsGiven the malleable nature of the factors, we offer tangible implications for instructors and administrators to influence the adoption of more active learning strategies in introductory STEM courses. 
    more » « less
  3. Symmetry is a foundational concept in inorganic chemistry, essential for understanding molecular properties and interactions. Yet, little is known about how instructors teach symmetry or what shapes their instructional and curricular choices. To investigate this, we analyzed classroom observations from fourteen inorganic chemistry instructors from various institutions, focusing on their use of student-centered practices and emphasis on symmetry content. We then conducted semi-structured interviews to explore the reasoning behind their decisions, using the Teacher-Centered Systemic Reform (TCSR) model to interpret influences from personal factors (e.g., teaching experience), teacher thinking (e.g., beliefs about teaching and learning), and contextual factors (e.g., classroom layout). Minute-by-minute analyses of teaching revealed four instructional profiles (student-centered, high-interactive, low-interactive, and instructor-centered) and four content profiles, ranging from an emphasis on symmetry fundamentals (e.g., symmetry elements and operations, point group assignment) to symmetry applications (e.g., spectroscopy, molecular orbitals, character tables). Three themes emerged: (1) instructional approaches and content emphasis vary substantially across instructors; (2) more student-centered instructors tend to focus on foundational symmetry concepts and skills, whereas more instructor-centered instructors tend to prioritize advanced applications; and (3) instructors’ beliefs and prior experiences, more than personal and contextual factors, drive instructional decisions for teaching symmetry. 
    more » « less
  4. Dalby, Andrew R. (Ed.)
    Traditional teaching practices in undergraduate science, technology, engineering, and mathematics (STEM) courses have failed to support student success, causing many students to leave STEM fields and disproportionately affecting women and students of color. Although much is known about effective STEM teaching practices, many faculty continue to adhere to traditional methods, such as lecture. In this study, we investigated the factors that affect STEM faculty members’ instructional decisions about evidence-based instructional practices (EBIPs). We performed a qualitative analysis of semi-structured interviews with faculty members from the Colleges of Physical and Mathematical Sciences, Life Sciences, and Engineering who took part in a professional development program to support the use of EBIPs by STEM faculty at the university. We used an ecological model to guide our investigation and frame the results. Faculty identified a variety of personal, social, and contextual factors that influenced their instructional decision-making. Personal factors included attitudes, beliefs, and self-efficacy. Social factors included the influence of students, colleagues, and administration. Contextual factors included resources, time, and student characteristics. These factors interact with each other in meaningful ways that highlight the hyper-local social contexts that exist within departments and sub-department cultures, the importance of positive feedback from students and colleagues when implementing EBIPs, and the need for support from the administration for faculty who are in the process of changing their teaching. 
    more » « less
  5. Entrepreneurship education scholars have endorsed teaching for experiential learning as an innovative instructional approach. However, empirical studies in the 2010s revealed a persistent reliance on lecture-centered teaching in entrepreneurship classrooms. Since then, few studies have examined this issue in conjunction with emerging trends, particularly the accelerated technology integration. This study addresses this research gap through a mixed-methods approach, combining 107 survey responses and 9 interviews with U.S. entrepreneurship instructors. Findings reveal the current pedagogical landscape of entrepreneurship education: (1) the widespread adoption of inquiry-based and learner-centered teaching in entrepreneurship education and mixed adoption of technology integration, (2) the influence of instructors’ perspectives on entrepreneurship in adopting inquiry-based teaching, (3) the benefits of professional development programs, and (4) structural barriers to fully adopting experiential learning in higher education. These results also illuminate key contemporary issues such as the importance of entrepreneurial identity for innovative teaching practices, the lack of a theoretical framework regarding the relationship between technology and entrepreneurship, as well as the challenges faced by underserved communities in ensuring authentic experiential learning. These findings inform higher education leaders about ways to enhance the quality of entrepreneurship education and provide scholars with fruitful directions for future research. 
    more » « less