skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Giant Energy Density via Mechanically Tailored Relaxor Ferroelectric Behavior of PZT Thick Film
Abstract Relaxor ferroelectrics (RFEs) are being actively investigated for energy‐storage applications due to their large electric‐field‐induced polarization with slim hysteresis and fast energy charging–discharging capability. Here, a novel nanograin engineering approach based upon high kinetic energy deposition is reported, for mechanically inducing the RFE behavior in a normal ferroelectric Pb(Zr0.52Ti0.48)O3(PZT), which results in simultaneous enhancement in the dielectric breakdown strength (EDBS) and polarization. Mechanically transformed relaxor thick films with 4 µm thickness exhibit an exceptionalEDBSof 540 MV m−1and reduced hysteresis with large unsaturated polarization (103.6 µC cm−2), resulting in a record high energy‐storage density of 124.1 J cm−3and a power density of 64.5 MW cm−3. This fundamental advancement is correlated with the generalized nanostructure design that comprises nanocrystalline phases embedded within the amorphous matrix. Microstructure‐tailored ferroelectric behavior overcomes the limitations imposed by traditional compositional design methods and provides a feasible pathway for realization of high‐performance energy‐storage materials.  more » « less
Award ID(s):
2133373
PAR ID:
10541411
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
45
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A systematic study of (1− x )Pb(Fe 0.5 Nb 0.5 )O 3 – x BiFeO 3 ( x = 0–0.5) was performed by combining dielectric and electromechanical measurements with structural and microstructural characterization in order to investigate the strengthening of the relaxor properties when adding BiFeO 3 into Pb(Fe 0.5 Nb 0.5 )O 3 and forming a solid solution. Pb(Fe 0.5 Nb 0.5 )O 3 crystalizes in monoclinic symmetry exhibiting ferroelectric-like polarization versus electric field ( P–E ) hysteresis loop and sub-micron-sized ferroelectric domains. Adding BiFeO 3 to Pb(Fe 0.5 Nb 0.5 )O 3 favors a pseudocubic phase and a gradual strengthening of the relaxor behavior of the prepared ceramics. This is indicated by a broadening of the peak in temperature-dependent permittivity, narrowing of P–E hysteresis loops and decreasing size of ferroelectric domains resulting in polar nanodomains for x = 0.20 composition. The relaxor behavior was additionally confirmed by Vogel–Fulcher analysis. For the x ≥ 0.30 compositions, broad high-temperature anomalies are observed in dielectric permittivity versus temperature measurements in addition to the frequency-dispersive peak located close to room temperature. These samples also exhibit pinched P–E hysteresis loops. The observed pinching is most probably related to the reorganization of polar nanoregions under the electric field as shown by synchrotron X-ray diffraction measurements as well as by piezo-response force microscopy analysis, while in part affected by the presence of charged point defects and anti-ferroelectric order, as indicated from rapid cooling experiments and high-resolution transmission electron microscopy, respectively. 
    more » « less
  2. Abstract Highly responsive, voltage‐tunable dielectrics are essential for microwave‐telecommunication electronics. Ferroelectric/relaxor materials have been leading candidates for such functionality and have exhibited agile dielectric responses. Here, it is demonstrated that relaxor materials developed from antiferroelectrics can achieve both ultrahigh dielectric response and tunability. The system, based on alloying the archetypal antiferroelectric PbZrO3with the dielectric BaZrO3, exhibits a more complex phase evolution than that in traditional relaxors and is characterized by an unconventional multi‐phase competition between antiferroelectric, ferroelectric, and paraelectric order. This interplay of phases can greatly enhance the local heterogeneities and results in relaxor characteristics while preserving considerable polarizability. Upon studying Pb1‐xBaxZrO3forx= 0‐0.45, Pb0.65Ba0.35ZrO3is found to provide for exceptional dielectric tunability under low bias fields (≈81% at 200 kV cm−1and ≈91% at 500 kV cm−1) at 10 kHz, outcompeting most traditional relaxor ferroelectric films. This high tunability is sustained in the radio‐frequency range, resulting in a high commutation quality factor (>2000 at 1 GHz). This work highlights the phase evolution from antiferroelectrics (with lower, “positive” dielectric tunability) to relaxors (with higher, “negative” tunability), underscoring a promising approach to develop relaxors with enhanced functional capabilities and new possibilities. 
    more » « less
  3. Abstract Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d33*) in piezoelectric materials remains a formidable challenge for advanced actuator applications. Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arrays of ordered {100}<100> dislocations is proposed. This dislocation engineering yields an intrinsic lock‐in steady–state electrostrain of 0.69% at a low field of 10 kV cm−1without external stress and an output strain energy density of 5.24 J cm−3in single‐crystal BaTiO3, outperforming the benchmark piezoceramics and relaxor ferroelectric single‐crystals. Additionally, applying a compression stress of 6 MPa fully unlocks electrostrains exceeding 1%, yielding a remarkabled33* value over 10 000 pm V−1and achieving a record‐high strain energy density of 11.67 J cm−3. Optical and transmission electron microscopy, paired with laboratory and synchrotron X‐ray diffraction, is employed to rationalize the observed electrostrain. Phase‐field simulations further elucidate the impact of charged dislocations on domain nucleation and domain switching. These findings present an effective and sustainable strategy for developing high‐performance, lead‐free piezoelectric materials without the need for additional chemical elements, offering immense potential for actuator technologies. 
    more » « less
  4. Abstract Antiferroelectrics are a promising class of materials for applications in capacitive energy storage and multi‐state memory, but comprehensive control of their functional properties requires further research. In thin films, epitaxial strain and size effects are important tuning knobs but difficult to probe simultaneously due to low critical thicknesses of common lead‐based antiferroelectrics. Antiferroelectric NaNbO3enables opportunities for studying size effects under strain, but electrical properties of ultra‐thin films have not been thoroughly investigated due to materials challenges. Here, high‐quality, epitaxial, coherently‐strained NaNbO3films are synthesized from 35‐ to 250‐ nm thickness, revealing a transition from a fully ferroelectric state to coexisting ferroelectric and antiferroelectric phases with increasing thickness. The electrical performance of this phase coexistence is analyzed through positive‐up negative‐down and first‐order reversal curve measurements. Further increasing thickness leads to a fully ferroelectric state due to a strain relief mechanism that suppresses the antiferroelectricity. The potential of engineering competing ferroic orders in NaNbO3for multiple applications is evaluated, reporting significantly enhanced recoverable energy density (20.6 J cm−3at 35 nm) and energy efficiency (90% at 150 nm) relative to pure bulk NaNbO3as well as strong retention and fatigue performance with multiple accessible polarization states in the intermediate thickness films. 
    more » « less
  5. Abstract The impact of alkali‐rich and alkali‐depleted surface terminations on dielectric nonlinearity and ferroelectric properties was investigated in sputtered K0.5Na0.5NbO3(KNN) films. For the alkali depleted surface termination, a ∼3 nm thick amorphous interfacial layer was found near the top electrode. The presence of a non‐ferroelectric interfacial layer reduces both the net remanent (Pr) and maximum polarization (Pmax) while increasing the coercive field (Ec) in the KNN films.Pmaxdecreased from 31.5 to 30.3 µC/cm2, likely due to the reduced electric field in the bulk of the film. The influence of the interfacial layer on dielectric properties was evaluated using a capacitor in series model. After removing the effects of the interfacial layer, the Rayleigh coefficientsεinitand α increased by 11 and 47%, respectively. The interfacial layer has more impact on irreversible domain wall motion than on reversible contributions to the relative permittivity. It is believed that this occurs because a higher concentration of defects, such as or , associated with the alkali‐depleted interfacial layer generates internal fields that pin domain walls. Alkali depleted surface terminations also produce a higher pseudo‐activation energy for polarization reversal compared to films with alkali rich terminations, with deeper potential wells in the material's energy landscape. 
    more » « less