skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Response of ion velocities of daytime ionospheric wavenumber-4 to solar activity observed by ROCSAT-1 and DEMETER
Abstract The electron/ion density/temperature and ion velocities observed by the ROCSAT-1 and DEMETER satellites are used to examine the daytime wavenumber-4 (WN4) feature in the equatorial/low latitude ionosphere during various months and solar activity levels of 1999–2010. A moving median process has been employed to isolate WN4 features and calculate their amplitudes, while the upward ion drift is used to estimate electric fields. The ROCSAT-1 and DEMETER ion density, ion temperature, and ion velocity generally yield prominent WN4 features over the center of Pacific Ocean, the west side of South America, the center of the Atlantic Ocean, and Southern India. The correlation coefficient between the deviation of ion density and upward ion drift is significant during high solar activity of 1999–2004, while it approaches to zero during low solar activity of 2004–2010. This confirms that the longitudinal variation of the upward ion drift is essential during high solar activity, and the associated amplitude of dynamo eastward electric field is in the range of 0.10–0.14 mV/m, which is 15–19% of daily dynamo electric field. By contrast, the deviation of the ion density and the northward field-aligned ion flow show a clear anti-correlation which yields a maximum coefficient in August during low solar activity but no correlation during high solar activity. These indicate that the longitudinal variation of the meridional field-aligned ion flow could play an important role during low solar activity, and its amplitude is in the range of 10.44–13.91 m/s, which is 10–13% of the ambient ion flows.  more » « less
Award ID(s):
2028032
PAR ID:
10541649
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Terrestrial, Atmospheric and Oceanic Sciences
Volume:
35
Issue:
1
ISSN:
1017-0839
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Penetrating and disturbed electric fields develop during geomagnetic storms and are effective in driving remarkable changes in the nightside low latitude ionosphere over varying time periods. While the former arrive nearly instantaneously with the changes in the solar wind electric field, the latter take more time, requiring auroral heating to modify upper atmospheric winds globally, leading to changes in the thermospheric wind dynamo away from the auroral zones. Such changes always differ from the quiet time state where the winds are usually patterned after daytime solar heating. We use the Multiscale Atmosphere‐Geospace Environment model (MAGE) and observations from the NASA Ionospheric Connection Explorer (ICON) mission to investigate both during the 7–8 July 2022 geomagnetic storm event. The model was able to simulate the penetrating and disturbed electric fields. The simulations showed enhanced westward winds and the wind dynamo induced upward ion drift confirmed by the ICON zonal wind and ion drift observations. The simulated zonal wind variations are slightly later in arrival at the low latitudes. We also see the penetrating electric field opposes or cancels the disturbed electric field in the MAGE simulation. 
    more » « less
  2. Abstract Results from a dynamo electric field model are presented to examine the consistency of the widely used empirical models of low‐latitude plasma drifts and thermospheric neutral winds. The sector defined by the Jicamarca Radar measured plasma drifts is used due to the greater certainty of the empirical vertical plasma drifts. The plasma drifts produced by the Horizontal Wind Model (HWM) in a coupled ionosphere‐electric field model for geomagnetically quiet and moderate solar conditions are compared against empirical models of equatorial plasma drifts for the Peruvian sector. The HWM generates reasonable sunset prereversal enhancement of the vertical drift in all but May, June, July, and August when no prereversal enhancement exists in the empirical results. The daytime vertical drifts are deficient during all seasons. A solar diurnal and semi‐diurnal tidal forcing are required in the E region (100–150 km) to bring the HWM into better agreement as a dynamo driver for the daytime electric fields associated with the broad Solar Quiet current system. 
    more » « less
  3. Recent analysis of energetic electron measurements from the Magnetic Electron Ion Spectrometer instruments onboard the Van Allen Probes showed a local time variation of the equatorial electron intensity in the Earth’s inner radiation belt. The local time asymmetry was interpreted as evidence of drift shell distortion by a large-scale electric field. It was also demonstrated that the inclusion of a simple dawn-to-dusk electric field model improved the agreement between observations and theoretical expectations. Yet, exactly what drives this electric field was left unexplained. We combine in-situ field and particle observations, together with a physics-based coupled model, the Rice Convection Model (RCM) Coupled Thermosphere-Ionosphere-Plasmasphere-electrodynamics (CTIPe), to revisit the local time asymmetry of the equatorial electron intensity observed in the innermost radiation belt. The study is based on the dawn-dusk difference in equatorial electron intensity measured at L = 1.30 during the first 60 days of the year 2014. Analysis of measured equatorial electron intensity in the 150–400 keV energy range, in-situ DC electric field measurements and wind dynamo modeling outputs provide consistent estimates of the order of 6–8 kV for the average dawn-to-dusk electric potential variation. This suggests that the dynamo electric fields produced by tidal motion of upper atmospheric winds flowing across Earth’s magnetic field lines - the quiet time ionospheric wind dynamo - are the main drivers of the drift shell distortion in the Earth’s inner radiation belt. 
    more » « less
  4. Abstract We present observations during two substorms using simultaneous Time History of Events and Macroscale Interactions During Substorms satellites and all‐sky imagers to determine plasma sheet dynamics associated with substorm auroral onset beads. The multi‐satellite observations showed that the cross‐tail current decreased and the field‐aligned currents increased at the substorm auroral onset, indicating that the satellites detected an initiation of the currents being deflected to the ionosphere. For duskward‐propagating beads, the electric field was tailward, and ions were accumulated closer to the Earth than electrons. The mapped bead propagation speed was close to energetic ion drift speed. Theand electron drift speeds increased duskward and reduced the cross‐tail current at the onset. For dawnward‐propagating beads, the electric field was equatorward/earthward, and electrons were inferred to accumulate earthward of ions. The mapped bead propagation speed was comparable to the dawnwardand electron drift speeds. The duskward ion drift and tail current were reduced, and electrons became the dominant current carrier. We suggest that the plasma species that is responsible for the bead propagation changes with the electric field configuration and that the tail current reduction by the enhanceddrift at onset destabilizes the plasma sheet. Ion and electron outflows substantially increased low‐energy plasma density and may have increased the role ofdrifts. The bead wavelength was comparable to ion gyroradius and thus ion kinetic effects are important for determining the wavelength. In the dawnward‐propagating event, the mode of oscillation in the plasma sheet was suggested to be the sausage‐mode flapping oscillations. 
    more » « less
  5. null (Ed.)
    Abstract In Earth’s low atmosphere, hurricanes are destructive due to their great size, strong spiral winds with shears, and intense rain/precipitation. However, disturbances resembling hurricanes have not been detected in Earth’s upper atmosphere. Here, we report a long-lasting space hurricane in the polar ionosphere and magnetosphere during low solar and otherwise low geomagnetic activity. This hurricane shows strong circular horizontal plasma flow with shears, a nearly zero-flow center, and a coincident cyclone-shaped aurora caused by strong electron precipitation associated with intense upward magnetic field-aligned currents. Near the center, precipitating electrons were substantially accelerated to ~10 keV. The hurricane imparted large energy and momentum deposition into the ionosphere despite otherwise extremely quiet conditions. The observations and simulations reveal that the space hurricane is generated by steady high-latitude lobe magnetic reconnection and current continuity during a several hour period of northward interplanetary magnetic field and very low solar wind density and speed. 
    more » « less