As increasingly complex and dynamic volumetric DDoS attacks continue to wreak havoc on edge networks, two recent developments promise to bolster DDoS defense at the edge. First, programmable switches have emerged as promising means for achieving scalable and cost-effective attack signature detection. However, their practical application in edge networks remains a challenging open problem. Second, machine learning (ML)-based solutions have demonstrated potential in accurately detecting attack signatures based on per-flow traffic features. Yet, their inability to effectively scale to the traffic volumes and number of flows in actual production edge networks has largely excluded them from practical considerations.In this paper, we introduce ZAPDOS, a novel approach to accurately, quickly, and scalably detect volumetric DDoS attack signatures at the source prefix level. ZAPDOS is the first to utilize a key characteristic of the observed structure of measured attack and benign source prefixes (i.e., a pronounced cluster-within-cluster property) and effectively apply it in practice against modern attacks. ZAPDOS operates by monitoring aggregate prefix-level features in switch hardware, employing a learning model to identify prefixes suspected of containing attack sources, and using several innovative algorithmic methods to pinpoint attack sources efficiently. We have built a hardware prototype of ZAPDOS and a packet-level software simulator which achieves comparable accuracy results. Since existing datasets are inadequate for training and evaluating prefix-level models, we have developed a new data-fusion methodology for training and evaluating ZAPDOS. We use our prototype and simulator to show that ZAPDOS can detect volumetric DDoS attack signatures with orders of magnitude lower error rates than state-of-the-art under comparable monitoring resource budgets and for a range of different attack scenarios.
more »
« less
Information Diversity based Detection for ON-OFF Low Strength DDoS Attacks in Smart Home IoT
In this paper, we propose a lightweight explainable machine learning approach that is device and attack-type agnostic and can detect IoT devices that are victims of low-intensity direct and reflective volumetric DDoS attacks launched in an ON-OFF manner. Specifically, our approach is based on a parameterized bio-inspired information-theoretic model that can capture small and subtle volumetric differences between attack versus benign byte volumes exchanged between IoT devices and the rest of the internet. Our approach has four main phases: (1) Feature Engineering involving a simple compression to achieve a universally reduced feature space for volumetric attacks; (2) Model Parameterization: identify appropriate parameters of a bio-inspired information-theoretic model and their appropriate pruned search spaces. (3) Parameter Learning: take a supervised approach for learning the optimal parameters of the explainable model using a local search. (4) Testing: We apply the learned parameters in the test set. For validation, we use real datasets from 4 different types of IoT devices containing seven different kinds of attacks and varying DDoS attack volumes. Furthermore, we employ strategies to counter the inherent biases in attacked datasets to ensure unbiased evaluation.
more »
« less
- Award ID(s):
- 2030611
- PAR ID:
- 10541784
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400716737
- Page Range / eLocation ID:
- 292 to 297
- Format(s):
- Medium: X
- Location:
- Chennai India
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Internet of Things (IoT) is a network of sensors that helps collect data 24/7 without human intervention. However, the network may suffer from problems such as the low battery, heterogeneity, and connectivity issues due to the lack of standards. Even though these problems can cause several performance hiccups, security issues need immediate attention because hackers access vital personal and financial information and then misuse it. These security issues can allow hackers to hijack IoT devices and then use them to establish a Botnet to launch a Distributed Denial of Service (DDoS) attack. Blockchain technology can provide security to IoT devices by providing secure authentication using public keys. Similarly, Smart Contracts (SCs) can improve the performance of the IoT–blockchain network through automation. However, surveyed work shows that the blockchain and SCs do not provide foolproof security; sometimes, attackers defeat these security mechanisms and initiate DDoS attacks. Thus, developers and security software engineers must be aware of different techniques to detect DDoS attacks. In this survey paper, we highlight different techniques to detect DDoS attacks. The novelty of our work is to classify the DDoS detection techniques according to blockchain technology. As a result, researchers can enhance their systems by using blockchain-based support for detecting threats. In addition, we provide general information about the studied systems and their workings. However, we cannot neglect the recent surveys. To that end, we compare the state-of-the-art DDoS surveys based on their data collection techniques and the discussed DDoS attacks on the IoT subsystems. The study of different IoT subsystems tells us that DDoS attacks also impact other computing systems, such as SCs, networking devices, and power grids. Hence, our work briefly describes DDoS attacks and their impacts on the above subsystems and IoT. For instance, due to DDoS attacks, the targeted computing systems suffer delays which cause tremendous financial and utility losses to the subscribers. Hence, we discuss the impacts of DDoS attacks in the context of associated systems. Finally, we discuss Machine-Learning algorithms, performance metrics, and the underlying technology of IoT systems so that the readers can grasp the detection techniques and the attack vectors. Moreover, associated systems such as Software-Defined Networking (SDN) and Field-Programmable Gate Arrays (FPGA) are a source of good security enhancement for IoT Networks. Thus, we include a detailed discussion of future development encompassing all major IoT subsystems.more » « less
-
A Distributed Denial of Service (DDoS) attack is an attempt to make an online service, a network, or even an entire organization, unavailable by saturating it with traffic from multiple sources. DDoS attacks are among the most common and most devastating threats that network defenders have to watch out for. DDoS attacks are becoming bigger, more frequent, and more sophisticated. Volumetric attacks are the most common types of DDoS attacks. A DDoS attack is considered volumetric, or high-rate, when within a short period of time it generates a large amount of packets or a high volume of traffic. High-rate attacks are well-known and have received much attention in the past decade; however, despite several detection and mitigation strategies have been designed and implemented, high-rate attacks are still halting the normal operation of information technology infrastructures across the Internet when the protection mechanisms are not able to cope with the aggregated capacity that the perpetrators have put together. With this in mind, the present paper aims to propose and test a distributed and collaborative architecture for online high-rate DDoS attack detection and mitigation based on an in-memory distributed graph data structure and unsupervised machine learning algorithms that leverage real-time streaming data and analytics. We have successfully tested our proposed mechanism using a real-world DDoS attack dataset at its original rate in pursuance of reproducing the conditions of an actual large scale attack.more » « less
-
null (Ed.)With the proliferation of smart and connected mobile, wireless devices at the edge, Distributed Denial of Service (DDoS) attacks are increasing. Weak security, improper commissioning, and the fast, non-standardized growth of the IoT industry are the major contributors to the recent DDoS attacks, e.g., Mirai Botnet attack on Dyn and Memcached attack on GitHub. Similar to UDP/TCP flooding (common DDoS attack vector), request flooding attack is the primary DDoS vulnerability in the Named-Data Networking (NDN) architecture.In this paper, we propose PERSIA, a distributed request flooding prevention and mitigation framework for NDN-enabled ISPs, to ward-off attacks at the edge. PERSIA's edge-centric attack prevention mechanism eliminates the possibility of successful attacks from malicious end hosts. In the presence of compromised infrastructure (routers), PERSIA dynamically deploys an in-network mitigation strategy to minimize the attack's magnitude. Our experimentation demonstrates PERSIA's resiliency and effectiveness in preventing and mitigating DDoS attacks while maintaining legitimate users' quality of experience (> 99.92% successful packet delivery rate).more » « less
-
The emerging Internet of Things (IoT) has increased the complexity and difficulty of network administration. Fortunately, Software-Defined Networking (SDN) provides an easy and centralized approach to administer a large number of IoT devices and can greatly reduce the workload of network administrators. SDN-based implementation of networks, however,has also introduced new security concerns, such as increasing number of DDoS attacks. This paper introduces an easy and lightweight defense strategy against DDoS attacks on IoT devices in a SDN environment using Markov Decision Process (MDP)in which optimal policies regarding handling network flows are determined with the intention of preventing DDoS attacks.more » « less
An official website of the United States government

