Modern vehicles can be thought of as complex distributed embedded systems that run a variety of automotive applications with real-time constraints. Recent advances in the automotive industry towards greater autonomy are driving vehicles to be increasingly connected with various external systems (e.g., roadside beacons, other vehicles), which makes emerging vehicles highly vulnerable to cyber-attacks. Additionally, the increased complexity of automotive applications and the in-vehicle networks results in poor attack visibility, which makes detecting such attacks particularly challenging in automotive systems. In this work, we present a novel anomaly detection framework called LATTE to detect cyber-attacks in Controller Area Network (CAN) based networks within automotive platforms. Our proposed LATTE framework uses a stacked Long Short Term Memory (LSTM) predictor network with novel attention mechanisms to learn the normal operating behavior at design time. Subsequently, a novel detection scheme (also trained at design time) is used to detect various cyber-attacks (as anomalies) at runtime. We evaluate our proposed LATTE framework under different automotive attack scenarios and present a detailed comparison with the best-known prior works in this area, to demonstrate the potential of our approach.
more »
« less
This content will become publicly available on June 19, 2025
A Unified Time Series Analytics based Intrusion Detection Framework for CAN BUS Attacks
Modern smart vehicles have a Controller Area Network (CAN) that supports intra-vehicle communication between intelligent Electronic Control Units (ECUs). The CAN is known to be vulnerable to various cyber attacks. In this paper, we propose a unified framework that can detect multiple types of cyber attacks (viz., Denial of Service, Fuzzy, Impersonation) affecting the CAN. Specifically, we construct a feature by observing the timing information of CAN packets exchanged over the CAN bus network over partitioned time windows to construct a low dimensional representation of the entire CAN network as a time series latent space. Then, we apply a two tier anomaly based intrusion detection model that keeps track of short term and long term memory of deviations in the initial time series latent space, to create a 'stateful latent space'. Then, we learn the boundaries of the benign stateful latent space that specify the attack detection criterion. To find hyper-parameters of our proposed model, we formulate a preference based multi-objective optimization problem that optimizes security objectives tailored for a network-wide time series anomaly based intrusion detector by balancing trade-offs between false alarm count, time to detection, and missed detection rate. We use real benign and attack datasets collected from a Kia Soul vehicle to validate our framework and show how our performance outperforms existing works.
more »
« less
- Award ID(s):
- 2030611
- PAR ID:
- 10541787
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400704215
- Page Range / eLocation ID:
- 19 to 30
- Format(s):
- Medium: X
- Location:
- Porto Portugal
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Anomaly-based attack detection methods that rely on learning the benign profile of operation are commonly used for identifying data falsification attacks and faults in cyber-physical systems. However, most works do not assume the presence of attacks while training the anomaly detectors- and their impact on eventual anomaly detection performance during the test set. Some robust learning methods overcompensate mitigation which leads to increased false positives in the absence of attacks/threats during training. To achieve this balance, this paper proposes a framework to enhance the robustness of previous anomaly detection frameworks in smart living applications, by introducing three profound design changes for threshold learning of time series anomaly detectors:(1) Tukey bi-weight loss function instead of square loss function (2) adding quantile weights to regression errors of Tukey (3) modifying the definition of empirical cost function from MSE to the harmonic mean of quantile weighted Tukey losses. We show that these changes mitigate performance degradation in anomaly detectors caused by untargeted poisoning attacks during training- while is simultaneously able to prevent false alarms in the absence of such training set attacks. We evaluate our work using a proof of concept that uses state-of-the-art anomaly detection in smart living CPS that detects false data injection in smart metering.more » « less
-
null (Ed.)Cyber-threats are continually evolving and growing in numbers and extreme complexities with the increasing connectivity of the Internet of Things (IoT). Existing cyber-defense tools seem not to deter the number of successful cyber-attacks reported worldwide. If defense tools are not seldom, why does the cyber-chase trend favor bad actors? Although cyber-defense tools monitor and try to diffuse intrusion attempts, research shows the required agility speed against evolving threats is way too slow. One of the reasons is that many intrusion detection tools focus on anomaly alerts’ accuracy, assuming that pre-observed attacks and subsequent security patches are adequate. Well, that is not the case. In fact, there is a need for techniques that go beyond intrusion accuracy against specific vulnerabilities to the prediction of cyber-defense performance for improved proactivity. This paper proposes a combination of cyber-attack projection and cyber-defense agility estimation to dynamically but reliably augur intrusion detection performance. Since cyber-security is buffeted with many unknown parameters and rapidly changing trends, we apply a machine learning (ML) based hidden markov model (HMM) to predict intrusion detection agility. HMM is best known for robust prediction of temporal relationships mid noise and training brevity corroborating our high prediction accuracy on three major open-source network intrusion detection systems, namely Zeek, OSSEC, and Suricata. Specifically, we present a novel approach for combined projection, prediction, and cyber-visualization to enable precise agility analysis of cyber defense. We also evaluate the performance of the developed approach using numerical results.more » « less
-
The landscape of automotive vehicle attack surfaces continues to grow, and vulnerabilities in the controller area network (CAN) expose vehicles to cyber-physical risks and attacks that can endanger the safety of passengers and pedestrians. Intrusion detection systems (IDS) for CAN have emerged as a key mitigation approach for these risks, but uniform methods to compare proposed IDS techniques are lacking. In this paper, we present a framework for comparative performance analysis of state-of-the-art IDSs for CAN bus to provide a consistent methodology to evaluate and assess proposed approaches. This framework relies on previously published datasets comprising message logs recorded from a real vehicle CAN bus coupled with traditional classifier performance metrics to reduce the discrepancies that arise when comparing IDS approaches from disparate sources.more » « less
-
Reliable methods for host-layer intrusion detection remained an open problem within computer security. Recent research has recast intrusion detection as a provenance graph anomaly detection problem thanks to concurrent advancements in machine learning and causal graph auditing. While these approaches show promise, their robustness against an adaptive adversary has yet to be proven. In particular, it is unclear if mimicry attacks, which plagued past approaches to host intrusion detection, have a similar effect on modern graph-based methods. In this work, we reveal that systematic design choices have allowed mimicry attacks to continue to abound in provenance graph host intrusion detection systems (Prov-HIDS). Against a corpus of exemplar Prov-HIDS, we develop evasion tactics that allow attackers to hide within benign process behaviors. Evaluating against public datasets, we demonstrate that an attacker can consistently evade detection (100% success rate) without modifying the underlying attack behaviors. We go on to show that our approach is feasible in live attack scenarios and outperforms domain-general adversarial sample techniques. Through open sourcing our code and datasets, this work will serve as a benchmark for the evaluation of future Prov-HIDS.more » « less