skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insights into Maximum Likelihood Detection for One-bit Massive MIMO Communications
One-bit massive MIMO has gained much attention in the areas of wireless communication and sensing. Among the various receiver designs, the maximum-likelihood-based receivers achieve state-of-the-art performance. Through this work we provide both analytical insight into the likelihood formulation, and develop a one-bit MIMO receiver, motivated specifically from this analysis. In particular, (i) Properties of the original Gaussian CDF based likelihood function are analyzed, culminating in an improved gradient descent (GD) algorithm for one-bit MIMO. (ii) This improved GD update rule is further enhanced through an accelerated GD method, improving convergence performance. (iii) The likelihood analysis is extended to an effective surrogate function for the Gaussian CDF, i.e., the logistic regression (LR). The presented analytical framework for the CDF also serves as a robust mathematical model to explain the enhanced performance of the LR, when utilized as a surrogate likelihood. (iv) Detection from a finite M-QAM constellation is incorporated by introducing a Gaussian denoiser to project the detected symbols onto the M-QAM subspace. This is implemented as a novel, unfolded, DNN architecture for one-bit detection. Through our experimental validation we demonstrate results on par with the current state- of-the-art methods for one-bit MIMO detection.  more » « less
Award ID(s):
2225617 2124929
PAR ID:
10541827
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Wireless Communications
ISSN:
1536-1276
Page Range / eLocation ID:
1 to 1
Subject(s) / Keyword(s):
Massive MIMO one-bit ADCs convex optimization accelerated gradient descent unfolded DNNs
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-user massive MIMO signal detection from one-bit received measurements strongly depends on the wireless channel. To this end, majority of the model and learning-based approaches address detector design for the rich-scattering, homogeneous Rayleigh fading channel. Our work proposes detection for one-bit massive MIMO for the lower diversity mmWave channel. We analyze the limitations of the current state-of-the-art gradient descent (GD)-based joint multiuser detection of one-bit received signals for the mmWave channels. Addressing these, we introduce a new framework to ensure equitable per-user performance, in spite of joint multi-user detection. This is realized by means of: (i) a parametric deep learning system, i.e., the mmW-ROBNet, (ii) a constellation-aware loss function, and (iii) a hierarchical detection training strategy. The experimental results corroborate this proposed approach for equitable per-user detection. 
    more » « less
  2. Quantum Annealing (QA)-accelerated MIMO detection is an emerging research approach in the context of NextG wireless networks. The opportunity is to enable large MIMO systems and thus improve wireless performance. The approach aims to leverage QA to expedite the computation required for theoretically optimal but computationally-demanding Maximum Likelihood detection to overcome the limitations of the currently deployed linear detectors. This paper presents X-ResQ, a QA-based MIMO detector system featuring flexible parallelism that is uniquely enabled by quantum Reverse Annealing (RA). Unlike prior designs, X-ResQ has many desirable parallel QA system properties and has effectively improved detection performance as more qubits are assigned. In our evaluations on a state-of-the-art quantum annealer, fully parallel X-ResQ achieves near-optimal throughput for 4 ×6 MIMO with 16-QAM using approx. 240 qubits achieving 2.5–5× gains compared against other classical and quantum detectors. We also implement and evaluate X-ResQ in the non-quantum digital setting for more comprehensive evaluations. This classical X-ResQ showcases the potential to realize ultra-large 1024 ×1024 MIMO, significantly outperforming other MIMO detectors, including the state-of-the-art RA detector classically implemented in the same way. 
    more » « less
  3. null (Ed.)
    Overcoming the conventional trade-off between throughput and bit error rate (BER) performance, versus computational complexity is a long-term challenge for uplink Multiple-Input Multiple-Output (MIMO) detection in base station design for the cellular 5G New Radio roadmap, as well as in next generation wireless local area networks. In this work, we present ParaMax, a MIMO detector architecture that for the first time brings to bear physics-inspired parallel tempering algorithmic techniques [28, 50, 67] on this class of problems. ParaMax can achieve near optimal maximum-likelihood (ML) throughput performance in the Large MIMO regime, Massive MIMO systems where the base station has additional RF chains, to approach the number of base station antennas, in order to support even more parallel spatial streams. ParaMax is able to achieve a near ML-BER performance up to 160 × 160 and 80 × 80 Large MIMO for low-order modulations such as BPSK and QPSK, respectively, only requiring less than tens of processing elements. With respect to Massive MIMO systems, in 12 × 24 MIMO with 16-QAM at SNR 16 dB, ParaMax achieves 330 Mbits/s near-optimal system throughput with 4--8 processing elements per subcarrier, which is approximately 1.4× throughput than linear detector-based Massive MIMO systems. 
    more » « less
  4. Abstract We present a high‐fidelity measurement‐based nonlinear model of low‐complexity millimeter‐wave transmit and receive circuits for design and analysis of 1‐bit on‐off‐key (OOK) massive MIMO wireless communications systems. The receive model is based upon a fabricated 38 GHz energy detector, representative of state‐of‐the‐art OOK millimeter‐wave receivers. The model is validated with measurements and includes nonlinear noise modeling. Performance of a large‐scale massive MIMO system is predicted with the model, and predictions are compared against a 4‐transmit‐element, N‐receive‐element testbed. Finally, we compute the channel capacity of several OOK massive MIMO systems, exploring tradeoffs in power consumption and number of transmit and receive cells. Results indicate a 1‐bit OOK array with low power pre‐amplifiers can achieve similar capacity to a classical linear receiver with less than one tenth the power consumption. The 1‐bit array compensates for the per‐cell simplicity by increasing the total number of cells while maintaining low overall power consumption. 
    more » « less
  5. null (Ed.)
    Low-resolution analog-to-digital converters (ADCs) have been considered as a practical and promising solution for reducing cost and power consumption in massive Multiple-Input-Multiple-Output (MIMO) systems. Unfortunately, low-resolution ADCs significantly distort the received signals, and thus make data detection much more challenging. In this paper, we develop a new deep neural network (DNN) framework for efficient and low-complexity data detection in low-resolution massive MIMO systems. Based on reformulated maximum likelihood detection problems, we propose two model-driven DNN-based detectors, namely OBMNet and FBMNet, for one-bit and few-bit massive MIMO systems, respectively. The proposed OBMNet and FBMNet detectors have unique and simple structures designed for low-resolution MIMO receivers and thus can be efficiently trained and implemented. Numerical results also show that OBMNet and FBMNet significantly outperform existing detection methods. 
    more » « less