skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: WeldMon: A Cost-effective Ultrasonic Welding Machine Condition Monitoring System
Ultrasonic welding machines play a critical role in the lithium battery industry, facilitating the bonding of batteries with conductors. Ensuring high-quality welding is vital, making tool condition monitoring systems essential for early-stage quality control. However, existing monitoring methods face challenges in cost, downtime, and adaptability. In this paper, we present WeldMon, an affordable ultrasonic welding machine condition monitoring system that utilizes a custom data acquisition system and a data analysis pipeline designed for real-time analysis. Our classification algorithm combines auto-generated features and hand-crafted features, achieving superior cross-validation accuracy (95.8% on average over all testing tasks) compared to the state-of-the-art method (92.5%) in condition classification tasks. Our data augmentation approach alleviates the dataset shift problem, enhancing tool condition classification accuracy by 8.3%. All algorithms run locally, requiring only 385 milliseconds to process data for each welding cycle. We deploy WeldMon and a commercial system on an actual ultrasonic welding machine, performing a comprehensive comparison. Our findings highlight the potential for developing cost-effective, high-performance, and reliable tool condition monitoring systems.  more » « less
Award ID(s):
2126246
PAR ID:
10541883
Author(s) / Creator(s):
; ; ; ; ;
Corporate Creator(s):
; ;
Editor(s):
Chakrabarti, Satyajit; Paul, Rajashree
Publisher / Repository:
IEEE
Date Published:
Edition / Version:
1
Volume:
1
Issue:
1
ISSN:
979-8-3503-0413-8
ISBN:
979-8-3503-0413-8
Page Range / eLocation ID:
0310 to 0319
Subject(s) / Keyword(s):
Condition monitoring Training Welding Acoustics Real-time systems Robustness Classification algorithms
Format(s):
Medium: X Size: 2Mb Other: pdf
Size(s):
2Mb
Location:
New York, NY, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Remote health monitoring is a powerful tool to provide preventive care and early intervention for populations-at-risk. Such monitoring systems are becoming available nowadays due to recent advancements in Internet-of-Things (IoT) paradigms, enabling ubiquitous monitoring. These systems require a high level of quality in attributes such as availability and accuracy due to patients critical conditions in the monitoring. Deep learning methods are very promising in such health applications to obtain a satisfactory performance, where a considerable amount of data is available. These methods are perfectly positioned in the cloud servers in a centralized cloud-based IoT system. However, the response time and availability of these systems highly depend on the quality of Internet connection. On the other hand, smart gateway devices are unable to implement deep learning methods (such as training models) due to their limited computational capacities. In our previous work, we proposed a hierarchical computing architecture (HiCH), where both edge and cloud computing resources were efficiently exploited, allocating heavy tasks of a conventional machine learning method to the cloud servers and outsourcing the hypothesis function to the edge. Due to this local decision making, the availability of the system was highly improved. In this paper, we investigate the feasibility of deploying the Convolutional Neural Network (CNN) based classification model as an example of deep learning methods in this architecture. Therefore, the system benefits from the features of the HiCH and the CNN, ensuring a high-level availability and accuracy. We demonstrate a real-time health monitoring for a case study on ECG classifications and evaluate the performance of the system in terms of response time and accuracy. 
    more » « less
  2. Abstract Wire arc additive manufacturing (WAAM) has gained attention as a feasible process in large-scale metal additive manufacturing due to its high deposition rate, cost efficiency, and material diversity. However, WAAM induces a degree of uncertainty in the process stability and the part quality owing to its non-equilibrium thermal cycles and layer-by-layer stacking mechanism. Anomaly detection is therefore necessary for the quality monitoring of the parts. Most relevant studies have applied machine learning to derive data-driven models that detect defects through feature and pattern learning. However, acquiring sufficient data is time- and/or resource-intensive, which introduces a challenge to applying machine learning-based anomaly detection. This study proposes a multisource transfer learning method that generates anomaly detection models for balling defect detection, thus ensuring quality monitoring in WAAM. The proposed method uses convolutional neural network models to extract sufficient image features from multisource materials, then transfers and fine-tunes the models for anomaly detection in the target material. Stepwise learning is applied to extract image features sequentially from individual source materials, and composite learning is employed to assign the optimal frozen ratio for converging transferred and present features. Experiments were performed using a gas tungsten arc welding-based WAAM process to validate the classification accuracy of the models using low-carbon steel, stainless steel, and Inconel. 
    more » « less
  3. Wire arc additive manufacturing is a promising additive manufacturing process because of its high deposition rate, and material diversity. However, the low quality of melted parts is a critical issue, owing to the difficulty in establishing design rules for process–structure–property–performance. Previous studies have resolved this challenge by deriving anomaly detection models for quality monitoring and have largely relied on machine learning by training melt pool image data. Acquiring sufficient data is a key to obtaining reliable models in machine learning; however, an issue arises from concerning the cost intensiveness in high-cost materials. We propose a material-adaptive anomaly detection method to detect balling defects in a target material using property-concatenated transfer learning. First, transfer learing is applied to derive convolutional neural network (CNN)-based models from a source material and transfer them to a target material, wherein data are insufficient and machine learning rarely achieves high performance. Second, material properties are concatenated on transfer learning as additional features onto image features, contrary to typical transfer learning where CNNs only extract image features. We perform experiments in a gas tungsten arc welding system with low-carbon steel (LCS), stainless steel (STS), and inconel (INC) materials. Our models achieve best classification accuracies of 82.95%, 89.47%, and 84.22% when transferring from LCS to STS, LCS to INC, and STS to INC, respectively, compared with 78.03%, 86.37%, and 73.63% obtained using typical transfer learning. The proposed method can effectively resolve the data scarcity by model transfer from sufficient datasets in low-cost materials to rare datasets in high-cost materials. Moreover, it outperforms typical transfer learning because material properties are learned as manufacturing-knowledge features, accounting for melting and hardening characteristics of materials. 
    more » « less
  4. Fall prevention has always been a crucial topic for injury prevention. Research shows that real-time posture monitoring and subsequent fall prevention are important for the prevention of fall-related injuries. In this research, we determine a real-time posture classifier by comparing classical and deep machine learning classifiers in terms of their accuracy and robustness for posture classification. For this, multiple classical classifiers, including classical machine learning, support vector machine, random forest, neural network, and Adaboost methods, were used. Deep learning methods, including LSTM and transformer, were used for posture classification. In the experiment, joint data were obtained using an RGBD camera. The results show that classical machine learning posture classifier accuracy was between 75% and 99%, demonstrating that the use of classical machine learning classification alone is sufficient for real-time posture classification even with missing joints or added noise. The deep learning method LSTM was also effective in classifying the postures with high accuracy, despite incurring a significant computational overhead cost, thus compromising the real-time posture classification performance. The research thus shows that classical machine learning methods are worthy of our attention, at least, to consider for reuse or reinvention, especially for real-time posture classification tasks. The insight of using a classical posture classifier for large-scale human posture classification is also given through this research. 
    more » « less
  5. Abstract While preventive maintenance is crucial in wind turbine operation, conventional condition monitoring systems face limitations in terms of cost and complexity when compared to innovative signal processing techniques and artificial intelligence. In this paper, a cascading deep learning framework is proposed for the monitoring of generator winding conditions, specifically to promptly detect and identify inter-turn short circuit faults and estimate their severity in real time. This framework encompasses the processing of high-resolution current signal samples, coupled with the extraction of current signal features in both time and frequency domains, achieved through discrete wavelet transform. By leveraging long short-term memory recurrent neural networks, our aim is to establish a cost-efficient and reliable condition monitoring system for wind turbine generators. Numeral experiments show an over 97% accuracy for fault diagnosis and severity estimation. More specifically, with the intrinsic feature provided by wavelet transform, the faults can be 100% identified by the diagnosis model. 
    more » « less