skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Motion Comparator: Visual Comparison of Robot Motions
Roboticists compare robot motions for tasks such as parameter tuning, troubleshooting, and deciding between possible motions. However, most existing visualization tools are designed for individual motions and lack the features necessary to facilitate robot motion comparison. In this letter, we utilize a rigorous design framework to develop Motion Comparator , a web-based tool that facilitates the comprehension, comparison, and communication of robot motions. Our design process identified roboticists' needs, articulated design challenges, and provided corresponding strategies. Motion Comparator includes several key features such as multi-view coordination, quaternion visualization, time warping, and comparative designs. To demonstrate the applications of Motion Comparator, we discuss four case studies in which our tool is used for motion selection, troubleshooting, parameter tuning, and motion review.  more » « less
Award ID(s):
2007436
PAR ID:
10541938
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
9
Issue:
9
ISSN:
2377-3774
Page Range / eLocation ID:
7699 to 7706
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we propose a novel online algorithm for motion similarity measurements during human-robot interaction (HRI). Specifically, we formulate a Segment-based Online Dynamic Time Warping (SODTW) algorithm that can be used for understanding of repeated and cyclic human motions, in the context of rehabilitation or social interaction. The algorithm can estimate both the human-robot motion similarity and the time delay to initiate motion and combine these values as a metric to adaptively select appropriate robot imitation repertoires. We validated the algorithm offline by post-processing experimental data collected from a cohort of 55 subjects during imitation episodes with our social robot Zeno. Furthermore, we implemented the algorithm online on Zeno and collected further experimental results with 13 human subjects. These results show that the algorithm can reveal important features of human movement including the quality of motion and human reaction time to robot stimuli. Moreover, the robot can adapt to appropriate human motion speeds based on similarity measurements calculated using this algorithm, enabling future adaptive rehabilitation interventions for conditions such as Autism Spectrum Disorders (ASD). 
    more » « less
  2. Frog-leg robots are widely used for wafer-handling in semiconductor manufacturing. A typical frog-leg robot uses a magnetic coupler to achieve contactless transmission of motion between its driving motors, which operate at atmospheric pressure, and its end effector (blade) which operates within a vacuum chamber. However, the magnetic coupler is a lowstiffness transmission element that induces residual vibration during fast motions of the robot. Excessive residual vibration can cause collisions between the fragile wafer carried by the robot and cassette, hence damaging the wafer. While this problem could be solved by slowing down the robot, it comes at the cost of reduced productivity, which is undesirable. Therefore, this paper reports a preliminary investigation into input shaping (a popular vibration compensation technique) as a tool to reduce residual vibration of a frog-leg robot during high-speed motions. Two types of motions of the robot are considered: rotation and extension. A standard input shaper is shown to be very effective for mitigating residual vibration caused by rotational motion but is much less effective for extensional motion. The rationale is that the resonance frequencies of the robot are constant during rotation but they vary significantly during extension, hence reducing the effectiveness of standard input shaping. This necessitates the use of more advanced input shapers that can handle varying resonance frequencies to mitigate residual vibration during extensional motion in future work. 
    more » « less
  3. Humans can learn to manipulate new objects by simply watching others; providing robots with the ability to learn from such demonstrations would enable a natural interface specifying new behaviors. This work develops Robot See Robot Do (RSRD), a method for imitating articulated object manipulation from a single monocular RGB human demonstration given a single static multi-view object scan. We first propose 4D Differentiable Part Models (4D-DPM), a method for recovering 3D part motion from a monocular video with differentiable rendering. This analysis-by-synthesis approach uses part-centric feature fields in an iterative optimization which enables the use of geometric regularizers to recover 3D motions from only a single video. Given this 4D reconstruction, the robot replicates object trajectories by planning bimanual arm motions that induce the demonstrated object part motion. By representing demonstrations as part-centric trajectories, RSRD focuses on replicating the demonstration's intended behavior while considering the robot's own morphological limits, rather than attempting to reproduce the hand's motion. We evaluate 4D-DPM's 3D tracking accuracy on ground truth annotated 3D part trajectories and RSRD's physical execution performance on 9 objects across 10 trials each on a bimanual YuMi robot. Each phase of RSRD achieves an average of 87% success rate, for a total end-to-end success rate of 60% across 90 trials. Notably, this is accomplished using only feature fields distilled from large pretrained vision models -- without any task-specific training, fine-tuning, dataset collection, or annotation. 
    more » « less
  4. Despite promises about the near-term potential of social robots to share our daily lives, they remain unable to form autonomous, lasting, and engaging relationships with humans. Many companies are deploying social robots into the consumer and commercial market; however, both the companies and their products are relatively short lived for many reasons. For example, current social robots succeed in interacting with humans only within controlled environments, such as research labs, and for short time periods since longer interactions tend to provoke user disengagement. We interviewed 13 roboticists from robot manufacturing companies and research labs to delve deeper into the design process for social robots and unearth the many challenges robot creators face. Our research questions were: 1) What are the different design processes for creating social robots? 2) How are users involved in the design of social robots? 3) How are teams of robot creators constituted? Our qualitative investigation showed that varied design practices are applied when creating social robots but no consensus exists about an optimal or standard one. Results revealed that users have different degrees of involvement in the robot creation process, from no involvement to being a central part of robot development. Results also uncovered the need for multidisciplinary and international teams to work together to create robots. Drawing upon these insights, we identified implications for the field of Human-Robot Interaction that can shape the creation of best practices for social robot design. 
    more » « less
  5. null (Ed.)
    Abstract Coral reef ecosystems support significant biological activities and harbor huge diversity, but they are facing a severe crisis driven by anthropogenic activities and climate change. An important behavioral trait of the coral holobiont is coral motion, which may play an essential role in feeding, competition, reproduction, and thus survival and fitness. Therefore, characterizing coral behavior through motion analysis will aid our understanding of basic biological and physical coral functions. However, tissue motion in the stony scleractinian corals that contribute most to coral reef construction are subtle and may be imperceptible to both the human eye and commonly used imaging techniques. Here we propose and apply a systematic approach to quantify and visualize subtle coral motion across a series of light and dark cycles in the scleractinian coral Montipora capricornis . We use digital image correlation and optical flow techniques to quantify and characterize minute coral motions under different light conditions. In addition, as a visualization tool, motion magnification algorithm magnifies coral motions in different frequencies, which explicitly displays the distinctive dynamic modes of coral movement. Specifically, our assessment of displacement, strain, optical flow, and mode shape quantify coral motion under different light conditions, and they all show that M. capricornis exhibits more active motions at night compared to day. Our approach provides an unprecedented insight into micro-scale coral movement and behavior through macro-scale digital imaging, thus offering a useful empirical toolset for the coral research community. 
    more » « less