skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Meta-learning linear quadratic regulators: a policy gradient MAML approach for model-free LQR
We investigate the problem of learning linear quadratic regulators (LQR) in a multi-task, heterogeneous, and model-free setting. We characterize the stability and personalization guarantees of a policy gradient-based (PG) model-agnostic meta-learning (MAML) (Finn et al., 2017) approach for the LQR problem under different task-heterogeneity settings. We show that our MAML-LQR algorithm produces a stabilizing controller close to each task-specific optimal controller up to a task-heterogeneity bias in both model-based and model-free learning scenarios. Moreover, in the model-based setting, we show that such a controller is achieved with a linear convergence rate, which improves upon sub-linear rates from existing work. Our theoretical guarantees demonstrate that the learned controller can efficiently adapt to unseen LQR tasks.  more » « less
Award ID(s):
2231350
PAR ID:
10542303
Author(s) / Creator(s):
; ; ;
Editor(s):
Abate, A; Cannon, M; Margellos, K; Papachristodoulou, A
Publisher / Repository:
Proceedings of Machine Learning Research (PMLR)
Date Published:
Volume:
242
Page Range / eLocation ID:
902-915
Format(s):
Medium: X
Location:
Oxford, United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. It is well-known that linear quadratic regulators (LQR) enjoy guaranteed stability margins, whereas linear quadratic Gaussian regulators (LQG) do not. In this letter, we consider systems and compensators defined over directed acyclic graphs. In particular, there are multiple decision-makers, each with access to a different part of the global state. In this setting, the optimal LQR compensator is dynamic, similar to classical LQG. We show that when sub-controller input costs are decoupled (but there is possible coupling between sub-controller state costs), the decentralized LQR compensator enjoys similar guaranteed stability margins to classical LQR. However, these guarantees disappear when cost coupling is introduced. 
    more » « less
  2. Common reinforcement learning methods seek optimal controllers for unknown dynamical systems by searching in the "policy" space directly. A recent line of research, starting with [1], aims to provide theoretical guarantees for such direct policy-update methods by exploring their performance in classical control settings, such as the infinite horizon linear quadratic regulator (LQR) problem. A key property these analyses rely on is that the LQR cost function satisfies the "gradient dominance" property with respect to the policy parameters. Gradient dominance helps guarantee that the optimal controller can be found by running gradient-based algorithms on the LQR cost. The gradient dominance property has so far been verified on a case-by-case basis for several control problems including continuous/discrete time LQR, LQR with decentralized controller, H2/H∞ robust control.In this paper, we make a connection between this line of work and classical convex parameterizations based on linear matrix inequalities (LMIs). Using this, we propose a unified framework for showing that gradient dominance indeed holds for a broad class of control problems, such as continuous- and discrete-time LQR, minimizing the L2 gain, and problems using system-level parameterization. Our unified framework provides insights into the landscape of the cost function as a function of the policy, and enables extending convergence results for policy gradient descent to a much larger class of problems. 
    more » « less
  3. We study a model-free federated linear quadratic regulator (LQR) problem where M agents with unknown, distinct yet similar dynamics collaboratively learn an optimal policy to minimize an average quadratic cost while keeping their data private. To exploit the similarity of the agents' dynamics, we propose to use federated learning (FL) to allow the agents to periodically communicate with a central server to train policies by leveraging a larger dataset from all the agents. With this setup, we seek to understand the following questions: (i) Is the learned common policy stabilizing for all agents? (ii) How close is the learned common policy to each agent's own optimal policy? (iii) Can each agent learn its own optimal policy faster by leveraging data from all agents? To answer these questions, we propose a federated and model-free algorithm named FedLQR. Our analysis overcomes numerous technical challenges, such as heterogeneity in the agents' dynamics, multiple local updates, and stability concerns. We show that FedLQR produces a common policy that, at each iteration, is stabilizing for all agents. We provide bounds on the distance between the common policy and each agent's local optimal policy. Furthermore, we prove that when learning each agent's optimal policy, FedLQR achieves a sample complexity reduction proportional to the number of agents M in a low-heterogeneity regime, compared to the single-agent setting. 
    more » « less
  4. This paper studies the issue of data-driven optimal control design for traffic signals of oversaturated urban road networks. The signal control system based on the store and forward model is generally uncontrollable for which the controllable decomposition is needed. Instead of identifying the unknown parameters like saturation rates and turning ratios, a finite number of measured trajectories can be used to parametrize the system and help directly construct a transformation matrix for Kalman controllable decomposition through the fundamental lemma of J. C. Willems. On top of that, an infinite-horizon linear quadratic regulator (LQR) problem is formulated considering the constraints of green times for traffic signals. The problem can be solved through a two-phase data-driven learning process, where one solves an infinite-horizon unconstrained LQR problem and the other solves a finite-horizon constrained LQR problem. The simulation result shows the theoretical analysis is effective and the proposed data-driven controller can yield desired performance for reducing traffic congestion. 
    more » « less
  5. We consider the problem of controlling a Linear Quadratic Regulator (LQR) system over a finite horizon T with fixed and known cost matrices Q,R, but unknown and non-stationary dynamics A_t, B_t. The sequence of dynamics matrices can be arbitrary, but with a total variation, V_T, assumed to be o(T) and unknown to the controller. Under the assumption that a sequence of stabilizing, but potentially sub-optimal controllers is available for all t, we present an algorithm that achieves the optimal dynamic regret of O(V_T^2/5 T^3/5 ). With piecewise constant dynamics, our algorithm achieves the optimal regret of O(sqrtST ) where S is the number of switches. The crux of our algorithm is an adaptive non-stationarity detection strategy, which builds on an approach recently developed for contextual Multi-armed Bandit problems. We also argue that non-adaptive forgetting (e.g., restarting or using sliding window learning with a static window size) may not be regret optimal for the LQR problem, even when the window size is optimally tuned with the knowledge of $$V_T$$. The main technical challenge in the analysis of our algorithm is to prove that the ordinary least squares (OLS) estimator has a small bias when the parameter to be estimated is non-stationary. Our analysis also highlights that the key motif driving the regret is that the LQR problem is in spirit a bandit problem with linear feedback and locally quadratic cost. This motif is more universal than the LQR problem itself, and therefore we believe our results should find wider application. 
    more » « less