Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem.
more »
« less
Thermomechanical and Morphological Properties of Loligo vulgaris Squid Sucker Ring Teeth
Synopsis Climate change is accelerating the increase of temperatures across the planet and resulting in the warming of oceans. Ocean warming threatens the survival of many aquatic species, including squids, and has introduced physiological, behavioral, and developmental changes, as well as physical changes in their biological materials composition, structure, and properties. Here, we characterize and analyze how the structure, morphology, and mechanical properties of European common squid Loligo vulgaris sucker ring teeth (SRT) are affected by temperature. SRT are predatory teethed structures located inside the suction cups of squids that are used to capture prey and are composed of semicrystalline structural proteins with a high modulus (GPa-range). We observed here that this biological material reversibly softens with temperature, undergoing a glass transition at ∼35°C, to a MPa-range modulus. We analyzed the SRT protein nanostructures as a function of temperature, as well as microscale and macroscale morphological changes, to understand their impact in the material properties. The results suggested that even small deviations from their habitat temperatures can result in significant softening of the material (up to 40% in modulus loss). Temperature changes following recent global climate trends and predictions might affect environmental adaptation in squid species and pose emerging survival challenges to adapt to increasing ocean temperatures.
more »
« less
- Award ID(s):
- 2309029
- PAR ID:
- 10542454
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative And Comparative Biology
- Volume:
- 64
- Issue:
- 2
- ISSN:
- 1540-7063
- Format(s):
- Medium: X Size: p. 234-242
- Size(s):
- p. 234-242
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Many predictions of how climate change will impact biodiversity have focused on range shifts using species‐wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life‐history plasticity vs. local adaptation to species‐wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species’ range—not only those at the trailing range edge—could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species’ latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade‐off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species’ ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species’ abundance and distribution.more » « less
-
Abstract Anthropogenic changes are often studied in isolation but may interact to affect biodiversity. For example, climate change could exacerbate the impacts of biological invasions if climate change differentially affects invasive and native species. Behavioural plasticity may mitigate some of the impacts of climate change, but species vary in their degree of behavioural plasticity. In particular, invasive species may have greater behavioural plasticity than native species since plasticity helps invasive species establish and spread in new environments. This plasticity could make invasives better able to cope with climate change.Here our goal was to examine whether reproductive behaviours and behavioural plasticity vary between an introduced and a nativeOnthophagusdung beetle species in response to warming temperatures and how differences in behaviour influence offspring survival.Using a repeated measures design, we exposed small colonies of introducedO. taurusand nativeO. hecateto three temperature treatments, including a control, low warming and high warming treatment, and then measured reproductive behaviours, including the number, size and burial depth of brood balls. We reared offspring in their brood balls in developmental temperatures that matched those of the brood ball burial depth to quantify survival.We found that the introducedO. taurusproduced more brood balls and larger brood balls, and buried brood balls deeper than the nativeO. hecatein all treatments. However, the two species did not vary in the degree of behavioural plasticity in response to warming. Differences in reproductive behaviours did affect survival such that warming temperatures had a greater effect on survival of offspring of nativeO. hecatecompared to introducedO. taurus.Overall, our results suggest that differences in behaviour between native and introduced species are one mechanism through which climate change may exacerbate negative impacts of biological invasions.more » « less
-
Abstract The Northwest Atlantic, which has exhibited evidence of accelerated warming compared to the global ocean, also experienced several notable marine heatwaves (MHWs) over the last decade. We analyze spatiotemporal patterns of surface and subsurface temperature structure across the Northwest Atlantic continental shelf and slope to assess the influences of atmospheric and oceanic processes on ocean temperatures. Here we focus on MHWs from 2015/16 and examine their physical drivers using observational and reanalysis products. We find that a combination of jet stream latitudinal position and ocean advection, mainly due to warm core rings shed by the Gulf Stream, plays a role in MHW development. While both atmospheric and oceanic drivers can lead to MHWs they have different temperature signatures with each affecting the vertical structure differently and horizontal spatial patterns of a MHW. Northwest Atlantic MHWs have significant socio-economic impacts and affect commercially important species such as squid and lobster.more » « less
-
Abstract Because foundation species create structure in a community, understanding their ecological and evolutionary responses to global change is critical for predicting the ecological and economic management of species and communities that rely on them. Giant kelp (Macrocystis pyrifera) is a globally distributed foundation species with seasonal fluctuations in abundance in response to local nutrient levels, storm intensity, and ocean temperatures. Here we examine genetic variation in individual and population‐level responses of early life history stages (zoospore settlement, survival, and gametogenesis) to increased temperatures to determine the potential for natural selection on temperature‐tolerant individuals that would allow adaptation to a changing climate. We collected fertileM. pyriferasporophyll blades from three sites along the California coast (Los Angeles, Santa Barbara, Monterey Bay) and induced zoospore release in the lab. Spores settled on microscope slides at three treatment temperatures (16, 20, and 22°C), matured for 21 days, and were imaged weekly to determine settlement, survival, and maturation success. On average, individuals from all sites showed lower rates of settlement and maturation in response to increasing temperature. However, the magnitude of the responses to temperature varied among populations. Survival tended to increase with temperature in Los Angeles and Santa Barbara populations but decreased with increasing temperature for the Monterey Bay population. We observed little genetic variation in temperature responses among individuals within sites, suggesting little scope for evolution within populations to increase the resilience ofM. pyriferapopulations to warming ocean temperatures and predicted declines in kelp abundance. Yet sufficient dispersal among populations could allow for adaptation of early life history traits among populations via evolutionary rescue of declining populations.more » « less
An official website of the United States government
