This content will become publicly available on August 1, 2025
- Award ID(s):
- 2119103
- PAR ID:
- 10542580
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Materials & Design
- Volume:
- 244
- Issue:
- C
- ISSN:
- 0264-1275
- Page Range / eLocation ID:
- 113096
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
NiTiHf is a class of promising high-temperature shape memory alloys (SMAs) that find many applications. However, their complex martensitic microstructure and attendant thermomechanical properties are not well understood. In this work, we used solution-treated (precipitate-free) and aged (precipitate-bearing) Ni50.3Ti29.7Hf20 (at.%) SMAs as a model system. We observed that the presence of precipitates refines the martensite plates, reduces the number of martensite variants, and changes the orientation relationship between the martensite plates compared with the solution-treated counterpart. Furthermore, the aged samples exhibited higher transformation temperatures, narrower phase transformation temperature windows, improved thermal stability, and retained or even improved actuation strain. The improved thermomechanical properties observed in the aged samples are attributed in part to the reduction of the number of martensite variants and the change in martensite and twin interface characteristics, both of which are induced by the presence of precipitates. The findings of this study offer new information on the processing-property-microstructure relationship in NiTiHf-based SMAs. These insights can guide future materials design efforts, facilitating the development of advanced SMAs tailored for specific high-temperature applications.more » « less
-
A phase-field model for thermomechanically-induced fracture in NiTi at the single crystal level, i.e., fracture under loading paths that may take advantage of either of the functional properties of NiTi–superelasticity or shape memory effect–, is presented, formulated within the kinematically linear regime. The model accounts for reversible phase transformation from austenite to martensite habit plane variants and plastic deformation in the austenite phase. Transformation-induced plastic deformation is viewed as a mechanism for accommodation of the local deformation incompatibility at the austenite–martensite interfaces and is accounted for by introducing an interaction term in the free energy derived based on the Mori–Tanaka and Kröner micromechanical assumptions and the hypothesis of martensite instantaneous growth within austenite. Based on experimental observations suggesting that NiTi fractures in a stress-controlled manner, damage is assumed to be driven by the elastic energy, i.e., phase transformation and plastic deformation are assumed to contribute in crack formation and growth indirectly through stress redistribution. The model is restricted to quasistatic mechanical loading (no latent heat effects), thermal loading sufficiently slow with respect to the time rate of heat transfer by conduction (no thermal gradients), and a temperature range below 𝑀𝑑, which is the temperature above which the austenite phase is stable, i.e., stress-induced martensitic transformation is suppressed. The numerical implementation of the model is based on an efficient scheme of viscous regularization in both phase transformation and plastic deformation, an explicit numerical integration via a tangent modulus method, and a staggered scheme for the coupling of the unknown fields. The model is shown able to capture transformation-induced toughening, i.e., stable crack advance attributed to the shielding effect of inelastic deformation left in the wake of the growing crack under nominal isothermal loading, actuation-induced fracture under a constant bias load, and crystallographic dependence on crack pattern.more » « less
-
Abstract Laser powder bed fusion (L-PBF) additive manufacturing (AM) is an effective method of fabricating nickel–titanium (NiTi) shape memory alloys (SMAs) with complex geometries, unique functional properties, and tailored material compositions. However, with the increase of Ni content in NiTi powder feedstock, the ability to produce high-quality parts is notably reduced due to the emergence of macroscopic defects such as warpage, elevated edge/corner, delamination, and excessive surface roughness. This study explores the printability of a nickel-rich NiTi powder, where printability refers to the ability to fabricate macro-defect-free parts. Specifically, single track experiments were first conducted to select key processing parameter settings for cubic specimen fabrication. Machine learning classification techniques were implemented to predict the printable space. The reliability of the predicted printable space was verified by further cubic specimens fabrication, and the relationship between processing parameters and potential macro-defect modes was investigated. Results indicated that laser power was critical to the printability of high Ni content NiTi powder. In the low laser power setting (P < 100 W), the printable space was relatively wider with delamination as the main macro-defect mode. In the sub-high laser power condition (100 W ≤ P ≤ 200 W), the printable space was narrowed to a low hatch spacing region with macro-defects of warpage, elevated edge/corner, and delamination happened at different scanning speeds and hatch spacing combinations. The rough surface defect emerged when further increasing the laser power (P > 200 W), leading to a further narrowed printable space.more » « less
-
Shape Memory Alloy (SMA)-actuators are efficient, simple, and robust alternatives to conventional actuators when a small volume and/or large force and stroke are required. The analysis of their failure response is critical for their design in order to achieve optimum functionality and performance. Here, (i) the existing knowledge base on the fatigue and overload fracture response of SMAs under actuation loading is reviewed regarding the failure micromechanisms, empirical relations for actuation fatigue life prediction, experimental measurements of fracture toughness and fatigue crack growth rates, and numerical investigations of toughness properties and (ii) future developments required to expand the acquired knowledge, enhance the current understanding, and ultimately enable commercial applications of SMA-actuators are discussed.more » « less
-
In the world of soft-robotic medical devices, there is a growing need for low profile, non-rigid, and lower power actuators for soft exoskeletons and dynamic compression garments. Advanced compression garments with integrated shape memory materials have been developed recently to alleviate the functional and usability limitations associated with traditional compression garments. These advanced garments use contractile shape memory alloy (SMA) coil actuators to produce dynamic compression on the body through selective heating of the SMA material. While these garments can create spatially- and temporally-controllable compression, typical SMA materials (e.g., 70°C Flexinol) consume considerable power and require considerable thermal insulation to protect the wearer during the heating phase of the SMA actuation. Alternative SMA materials (e.g., NiTi #8 by Fort Wayne Metals, Inc.) transform below room temperature and do so using no applied electrical power and generate no waste heat. However, these materials are challenging to dynamically control and require active refrigeration to reset to material. In theory, low-temperature SMA actuators made from materials like NiTi #8 may maintain additional dynamic actuation capacity once equilibrated to room temperature (i.e., the material may not fully transform), as the SMA phase transformation temperature window expands when the material experiences applied stress. This paper investigates this possibility: we manufactured and tested low-temperature NiTi coil actuators to determine the magnitude of the additional force that can be generated via Joule heating once the material has equilibrated to room temperature. SMA spring actuators made from NiTi #8 consumed 84% less power and stabilized at significantly lower temperatures (26.0°C vs. 41.2°C) than SMA springs made from 70°C Flexinol, when actuated at identically fixed displacements (100% nominal strain) and when driven to produce equal forces (∼3.35N). This demonstration of low-power, minimal-heat exposure SMA actuation holds promise for many future wearable actuation applications, including dynamic compression garments.