skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Imprints of the Local Bubble and Dust Complexity on Polarized Dust Emission
Abstract Using 3D dust maps and Planck polarized dust emission data, we investigate the influence of the 3D geometry of the nearby interstellar medium (ISM) on the statistics of the dust polarization on large ( 80 ) scales. We test recent models that assume that the magnetic field probed by the polarized dust emission is preferentially tangential to the Local Bubble wall, but we do not find an imprint of the Local Bubble geometry on the dust polarization fraction. We also test the hypothesis that the complexity of the 3D dust distribution drives some of the measured variation of the dust polarization fraction. We compare sight lines with similar total column densities and find that, on average, the dust polarization fraction decreases when the dust column is substantially distributed among multiple components at different distances. Conversely, the dust polarization fraction is higher for sight lines where the dust is more concentrated in 3D space. This finding is statistically significant for the dust within 1.25 kpc, but the effect disappears if we only consider dust within 270 pc. In conclusion, we find that the extended 3D dust distribution, rather than solely the dust associated with the Local Bubble, plays a role in determining the observed dust polarization fraction at 80′. This conclusion is consistent with a simple analytical prediction and remains robust under various modifications to the analysis. These results illuminate the relationship between the 3D geometry of the ISM and tracers of the interstellar magnetic field. We discuss implications for our understanding of the polarized dust foreground to the cosmic microwave background.  more » « less
Award ID(s):
2106607
PAR ID:
10542705
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
973
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 54
Size(s):
Article No. 54
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Utilizing Planck polarized dust emission maps at 353 GHz and large-area maps of the neutral hydrogen (Hi) cold neutral medium (CNM) fraction (fCNM), we investigate the relationship between dust polarization fraction (p353) andfCNMin the diffuse high latitude ( b > 30 ° ) sky. We find that the correlation betweenp353andfCNMis qualitatively distinct from thep353–Hicolumn density (NHi) relationship. At low column densities (NHi< 4 × 1020cm−2) wherep353andNHiare uncorrelated, there is a strong positivep353–fCNMcorrelation. We fit thep353–fCNMcorrelation with data-driven models to constrain the degree of magnetic field disorder between phases along the line of sight. We argue that an increased magnetic field disorder in the warm neutral medium (WNM) relative to the CNM best explains the positivep353–fCNMcorrelation in diffuse regions. Modeling the CNM-associated dust column as being maximally polarized, with a polarization fractionpCNM∼ 0.2, we find that the best-fit mean polarization fraction in the WNM-associated dust column is 0.22pCNM. The model further suggests that a significantfCNM-correlated fraction of the non-CNM column (an additional 18.4% of the Himass on average) is also more magnetically ordered, and we speculate that the additional column is associated with the unstable medium. Our results constitute a new large-area constraint on the average relative disorder of magnetic fields between the neutral phases of the interstellar medium, and are consistent with the physical picture of a more magnetically aligned CNM column forming out of a disordered WNM. 
    more » « less
  2. Abstract Continuum polarization over the UV-to-microwave range is due to dichroic extinction (or emission) by asymmetric, aligned dust grains. Scattering can also be an important source of polarization, especially at short wavelengths. Because of both grain alignment and scattering physics, the wavelength dependence of the polarization, generally, traces the size of the aligned grains. Similarly because of the differing wavelength dependencies of dichroic extinction and scattering polarization, the two can generally be reliably separated. Ultraviolet (UV) polarimetry therefore provides a unique probe of the smallest dust grains (diameter$$< 0.09~\upmu \text{m}$$ < 0.09 μm ), their mineralogy and interaction with the environment. However, the current observational status of interstellar UV polarization is very poor with less than 30 lines of sight probed. With the modern, quantitative and well-tested, theory of interstellar grain alignment now available, we have the opportunity to advance the understanding of the interstellar medium (ISM) by executing a systematic study of the UV polarization in the ISM of the Milky Way and near-by galaxies. The Polstar mission will provide the sensitivity and observing time needed to carry out such a program (probing hundreds of stars in the Milky Way and dozens of stars in the LMC/SMC), addressing questions of dust composition as a function of size and location, radiation- and magnetic-field characteristics as well as unveiling the carrier of the 2175 Å extinction feature. In addition, using high-resolution UV line spectroscopy Polstar will search for and probe the alignment of, and polarization from, aligned atoms and ions - so called “Ground State Alignment”, a potentially powerful new probe of magnetic fields in the diffuse ISM. 
    more » « less
  3. We study the spatially resolved outflow properties of CSWA13, an intermediate-mass (M* = 109M), gravitationally lensed star-forming galaxy atz= 1.87. We use Keck/KCWI to map outflows in multiple rest-frame UV interstellar medium (ISM) absorption lines, along with fluorescent Siii* emission, and nebular emission from Ciii] tracing the local systemic velocity. The spatial structure of the outflow velocity mirrors that of the nebular kinematics, which we interpret to be a signature of a young galactic wind that is pressurizing the ISM of the galaxy but is yet to burst out. From the radial extent of Siii* emission, we estimate that the outflow is largely encapsulated within 3.5 kpc. We explore the geometry (e.g., patchiness) of the outflow by measuring the covering fraction at different velocities, finding that the maximum covering fraction is at velocitiesv ≃ −150 km s−1. Using the outflow velocity (vout), radius (R), column density (N), and solid angle (Ω) based on the covering fraction, we measure the mass-loss rate log m ̇ out / ( M yr 1 ) = 1.73 ± 0.23 and mass loading factor log η = 0.04 ± 0.34 for the low-ionization outflowing gas in this galaxy. These values are relatively large and the bulk of the outflowing gas is moving with speeds less than the escape velocity of the galaxy halo, suggesting that the majority of the outflowing mass will remain in the circumgalactic medium and/or recycle back into the galaxy. The results support a picture of high outflow rates transporting mass and metals into the inner circumgalactic medium, providing the gas reservoir for future star formation. 
    more » « less
  4. Abstract Measuring the 3D spatial distribution of magnetic fields in the interstellar medium and the intracluster medium is crucial yet challenging. The probing of the 3D magnetic field’s 3D distribution, including the field plane-of-sky orientation (ψ), the magnetic field’s inclination angle (γ) relative to the line of sight, and the magnetization (∼the inverse Alfvén Mach number M A 1 ), at different distances from the observer makes the task even more formidable. However, the anisotropy and Faraday decorrelation effect in polarized synchrotron emission offer a unique solution. We show that due to the Faraday decorrelation, only regions up to a certain effective path length along the line of sight contribute to the statistical correlation of the measured polarization. The 3D spatial information can be consequently derived from synchrotron polarization derivatives (SPDs), which are calculated from the difference in synchrotron polarization across two wavelengths. We find that the 3D magnetic field can be estimated from the anisotropy observed in SPDs: the elongation direction of the SPD structures probesψ, and the degree of SPD anisotropy, along with its morphological curvature, provides insights into M A 1 andγ. To extract these anisotropic features and their correlation with the 3D magnetic field, we propose utilizing a machine learning approach, specifically the Vision Transformer (ViT) architecture, which was exemplified by the success of ChatGPT. We train the ViT using synthetic synchrotron observations generated from magnetohydrodynamic turbulence simulations in sub-Alfvénic and super-Alfvénic conditions. We show that ViT’s application to multiwavelength SPDs can successfully reconstruct the 3D magnetic fields’ 3D spatial distribution. 
    more » « less
  5. Abstract We present evidence for scale-independent misalignment of interstellar dust filaments and magnetic fields. We estimate the misalignment by comparing millimeter-wave dust-polarization measurements from Planck with filamentary structures identified in neutral-hydrogen (Hi) measurements from Hi4PI. We find that the misalignment angle displays a scale independence (harmonic coherence) for features larger than the Hi4PI beamwidth (16.′2). We additionally find a spatial coherence on angular scales of ( 1 ° ) . We present several misalignment estimators formed from the auto- and cross-spectra of dust-polarization and Hi-based maps, and we also introduce a map-space estimator. Applied to large regions of the high-Galactic-latitude sky, we find a global misalignment angle of ∼2°, which is robust to a variety of masking choices. By dividing the sky into small regions, we show that the misalignment angle correlates with the parity-violatingTBcross-spectrum measured in the Planck dust maps. The misalignment paradigm also predicts a dustEBsignal, which is of relevance in the search for cosmic birefringence but as yet undetected; the measurements ofEBare noisier than those ofTB, and our correlations ofEBwith misalignment angle are found to be weaker and less robust to masking choices. We also introduce an Hi-based dust-polarization template constructed from the Hessian matrix of the Hiintensity, which is found to correlate more strongly than previous templates with Planck dustBmodes. 
    more » « less