skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: phosaa14SB and phosaa19SB: Updated Amber Force Field Parameters for Phosphorylated Amino Acids
Phosphorylated amino acids are involved in many cell regulatory networks; proteins containing these post-translational modifications are widely studied both experimentally and computationally. Simulations are used to investigate a wide range of structural and dynamic properties of biomolecules, such as ligand binding, enzyme-reaction mechanisms, and protein folding. However, the development of force field parameters for the simulation of proteins containing phosphorylated amino acids using the Amber program has not kept pace with the development of parameters for standard amino acids, and it is challenging to model these modified amino acids with accuracy comparable to proteins containing only standard amino acids. In particular, the popular ff14SB and ff19SB models do not contain parameters for phosphorylated amino acids. Here, the dihedral parameters for the side chains of the most common phosphorylated amino acids are trained against reference data from QM calculations adopting the ff14SB approach, followed by validation against experimental data. Library files and corresponding parameter files are provided, with versions that are compatible with both ff14SB and ff19SB.  more » « less
Award ID(s):
1665159
PAR ID:
10542959
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of Chemical Theory and Computation
ISSN:
1549-9618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Modern life is essentially homochiral, containing D-sugars in nucleic acid backbones and L-amino acids in proteins. Since coded proteins are theorized to have developed from a prebiotic RNA World, the homochirality of L-amino acids observed in all known life presumably resulted from chiral transfer from a homochiral D-RNA World. This transfer would have been mediated by aminoacyl-RNAs defining the genetic code. Previous work on aminoacyl transfer using tRNA mimics has suggested that aminoacylation using D-RNA may be inherently biased toward reactivity with L-amino acids, implying a deterministic path from a D-RNA World to L-proteins. Using a model system of self-aminoacylating D-ribozymes and epimerizable activated amino acid analogs, we test the chiral selectivity of 15 ribozymes derived from an exhaustive search of sequence space. All of the ribozymes exhibit detectable selectivity, and a substantial fraction react preferentially to produce the D-enantiomer of the product. Furthermore, chiral preference is conserved within sequence families. These results are consistent with the transfer of chiral information from RNA to proteins but do not support an intrinsic bias of D-RNA for L-amino acids. Different aminoacylation structures result in different directions of chiral selectivity, such that L-proteins need not emerge from a D-RNA World. 
    more » « less
  2. ABSTRACT The diets of animals are essential to support development, and protein is key. Accumulation of stored nutrients can support developmental events such as molting and initiation of reproduction. Agricultural studies have addressed how dietary protein quality affects growth, but few studies have addressed the effects of dietary protein quality on developmental transitions. Studies on how dietary quality may affect protein storage and development are possible in arthropods, which store proteins in the hemolymph. We hypothesized that diets with a composition of amino acids that matches the precursor of egg yolk protein (vitellogenin, Vg) will be high quality and support both egg production and accumulation of storage proteins. Grasshoppers were fed one of two isonitrogenous solutions of amino acids daily: Vg-balanced (matched to Vg) or Unbalanced (same total moles of amino acids, but not matched to egg yolk). We measured reproduction and storage protein levels in serial hemolymph samples from individuals. The Vg-balanced group had greater reproduction and greater cumulative levels of storage proteins than did the Unbalanced group. This occurred even though amino acids fed to the Vg-balanced group were not a better match to storage protein than were the amino acids fed to the Unbalanced group. Further, oviposition timing was best explained by a combination of diet, age at the maximum level of storage protein hexamerin-270 and accumulation of hexamerin-90. Our study tightens the link between storage proteins and commitment to reproduction, and shows that dietary protein quality is vital for protein storage and reproduction. 
    more » « less
  3. NMR spectroscopy is the most important technique for understanding the structure of peptides and proteins in solution, providing information at the single-residue and single-atom level. However, written instruction in the interpretation of NMR spectra of peptides and proteins is generally focused on advanced techniques and highly complex spectra, with a lack of simple spectra and guides available for beginning students. In order to address this instructional limitation, we have generated a dataset of 1H NMR spectra of a series of simple peptides that include all canonical amino acids. Peptides examined include Ac-X(S/pS)-NH2, Ac-X(T/pT)-NH2, and Ac-XPPGY-NH2, where X = all encoded amino acids, pS = phosphorylated Ser, and pT = phosphorylated Thr. The characterization of each peptide includes a 1-D spectrum and a TOCSY spectrum, with both the raw and processed available. The spectra can be used for instructional applications including analysis of regions of the spectra (e.g. amide HN, aromatic, Hα, and aliphatic regions); identification of spin systems and residue assignment via TOCSY spectra; analysis of conformational features including amide HN chemical shift dispersion and changes due to hydrogen bonding or post-translational modifications; the 3JαN coupling constant that reports on the φ torsion angle and on order versus disorder at a given residue; conformational preferences at Hα via chemical shift index analysis; understanding of diastereotopic hydrogens; dynamic processes, including hydrogen exchange; and identification of proline cis-trans isomerism. In addition, for a limited number of peptides, NOESY spectra are included to allow sequential resonance assignment and for assignment of trans versus cis proline conformations. Spectra from closely related peptides allow the analysis of the relative effects of single amino acid changes. The paper is written to be directly accessible to students as a tutorial guide. In addition, the data can be used by instructors for problem sets and exams. 
    more » « less
  4. Proteins are an abundant biopolymer in organic waste feedstocks for biorefining. When degraded, amino acids are released, but their fate in non-methanogenic microbiomes is not well understood. The ability of a microbiome obtained from an anaerobic digester to produce volatile fatty acids from the twenty proteinogenic amino acids was tested using batch experiments. Batch tests were conducted using an initial concentration of each amino acid of 9000 mg COD L−1 along with 9000 mg COD L−1 acetate. Butyrate production was observed from lysine, glutamate, and serine fermentation. Lesser amounts of propionate, iso-butyrate, and iso-valerate were also observed from individual amino acids. Based on 16S rRNA gene amplicon sequencing, Anaerostignum, Intestimonas, Aminipila, and Oscillibacter all likely play a role in the conversion of amino acids to butyrate. The specific roles of other abundant taxa, including Coprothermobacter, Fervidobacterium, Desulfovibrio, and Wolinella, remain unknown, but these genera should be studied for their role in fermentation of amino acids and proteins to VFAs. 
    more » « less
  5. Abstract Symbiotic nitrogen (N) fixation entails successful interaction between legume hosts and rhizobia that occur in specialized organs called nodules. N-fixing legumes have a higher demand for phosphorus (P) than legumes grown on mineral N. Medicago truncatula is an important model plant for characterization of effects of P deficiency at the molecular level. Hence, a study was carried out to address the alteration in metabolite levels of M. truncatula grown aeroponically and subjected to 4 weeks of P stress. First, GC-MS-based untargeted metabolomics initially revealed changes in the metabolic profile of nodules, with increased levels of amino acids and sugars and a decline in amounts of organic acids. Subsequently, LC-MS/MS was used to quantify these compounds including phosphorylated metabolites in the whole plant. Our results showed a drastic reduction in levels of organic acids and phosphorylated compounds in –P leaves, with a moderate reduction in –P roots and nodules. Additionally, sugars and amino acids were elevated in the whole plant under P deprivation. These findings provide evidence that N fixation in M. truncatula is mediated through a N feedback mechanism that in parallel is related to carbon and P metabolism. 
    more » « less