skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding microwave-assisted extraction of phenolic compounds from diverse food waste feedstocks
Microwave-assisted extraction (MAE) of natural antioxidants from food waste (FW) offers an economically appealing waste management strategy. Here, we characterize five single waste streams (apple, coffee, olive, tomato, and potato peel waste) and study the MAE of phenolic acids from select feedstocks and mixtures. This library of materials enables us to unravel the relationship of the FW composition and physical properties with dielectric properties, heating, and extractive yields. For example, the protein, ash, and moisture contents affect dielectric properties the most. Our study unveils the significance of moisture in free and bound states on FW dielectric properties, heating, and target acid yields. The microwaves primarily heat the solvent (dimethylformamide) due to its superior dielectric properties compared to FW (dry and moist, single and mixtures) at ≤ 0.05 solid-to-liquid ratio. High moisture content provides higher phenolic yields at lower temperatures and shorter times due to enhanced heat and mass transfer by the microwaves. We recommend extraction before drying waste streams. Further, our data indicates significant interactions between components of mixed FW that drive 2-3x higher yields than those predicted from a simple additive model from single component results. Our work provides new insights for developing versatile MAE strategies to treat complex mixed FW feedstocks.  more » « less
Award ID(s):
1934887
PAR ID:
10542967
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Chemical Engineering and Processing - Process Intensification
Volume:
203
Issue:
C
ISSN:
0255-2701
Page Range / eLocation ID:
109870
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vlachos, Dionisios G. (Ed.)
    About 1.3 billion tons of global food production end up in landfills and composting, leading to significant anthropogenic greenhouse gas (GHG) emissions. Extracting antioxidant and antimicrobial chemicals (flavonoids, phenolic acids, etc.) from food waste is an economically lucrative valorization strategy but is hindered by efficient solvent selection. Here we perform in silico high throughput screening to identify high solubility solvents for key phenolics and reveal >100+ higher-performing solvents than the traditional ethanol and methanol. Solubilities of nine shortlisted solvents are measured and found in reasonable agreement with model predictions. Analysis of the Conductor like Screening Model for Real Solvents (COSMO-RS) σ-profiles and Hansen Solubility Parameters reveals that polarity and hydrogen bonding make dimethylformamide (DMF) an excellent single solvent. We showcase the replacement of high-solubility toxic solvents with green mixtures and demonstrate the approach to potato peel waste. Our work provides a blueprint for solvent selection and generates new insights into extraction from food waste. 
    more » « less
  2. Food waste (FW), a major part of the US waste stream, causes greenhouse gases within landfills, but there is an opportunity to divert FW to anaerobic digestion (AD) facilities that produce biogas and digestate fertilizer. The composition of FW inputs to AD determines the value of these products. This study provides insight into the effect of waste composition on the quality of AD products by first characterizing the biogas and digestate quality of anaerobically digested FW from four diets (paleolithic, ketogenic, vegetarian, and omnivorous), and then estimating the difference in biogas produced from codigested FW and brewery waste (BW). Waste feedstock mixtures were incubated in lab-scale bioreactors for 21 days with live inoculum. Biogas quality was monitored for 21–30 days in four trials. Samples were analyzed using a gas chromatograph for detection of methane (CH4) and carbon dioxide (CO2). The composition of the waste inputs had a significant impact on the quality of biogas but not on the quality of the digestate, which has implications for the value of post-AD fertilizer products. Wastes with higher proportions of proteins and fats enhanced biogas quality, unlike wastes that were rich in soluble carbohydrates. Codigestion of omnivorous food waste with carbon-rich agricultural wastes (AW) improved biogas quality, but biogas produced from BW does not necessarily improve with increasing amounts of AW in codigestion. 
    more » « less
  3. Small-scale anaerobic digestion (AD) can be an effective organic waste management system that also provides energy for small businesses and rural communities. This study measured fuel production from digestions of single and mixed feedstocks using an unheated, 2 m3 digester operated continuously in a temperate climate for over three years. Using local food waste, brewery waste, grease waste, and agricultural residues, this study determined that small-scale AD co-digestions were almost always higher yielding than single feedstocks during psychrophilic operation and seasonal temperature transitions. Agricultural residues from Miscanthus x giganteus had the greatest impact on biomethane production during co-digestion (4.7-fold greater average biogas %CH4), while mesophilic digestion of brewery waste alone produced the most biogas (0.76 gCH4 gVS−1 d−1). Biogas production during the transition from mesophilic to psychrophilic was temporarily maintained at levels similar to mesophilic digestions, particularly during co-digestions, but biogas quality declined during these temperature shifts. Full-time operation of small-scale, unheated AD systems could be feasible in temperate climates if feedstock is intentionally amended to stabilize carbon content. 
    more » « less
  4. High-entropy materials (HEMs) show inspiring structural and functional properties due to their multi-elemental compositions. However, most HEMs are burdened by cost-, energy-, and carbon-intensive extraction, synthesis, and manufacturing protocols. Recycling and reusing HEMs are challenging because their design relies on high fractions of expensive and limited-supply elements in massive solid solutions. Therefore, we review the basic sustainability aspects of HEMs. Solutions include using feedstock with lower carbon and energy footprints, sustainable primary synthesis routes from minerals, attenuation of the equimolar alloying rule, and a preference for scrap and dumped waste for secondary and tertiary synthesis. The high solubility, compositional flexibility, and chemical robustness of HEMs offer pathways for using higher fractions of mixed and contaminated scrap and waste feedstocks, which are not admissible for synthesizing conventional materials. We also discuss thermodynamic and kinetic design strategies to reconcile good material properties with high impurity tolerance and variable compositions. 
    more » « less
  5. This article aims to study the codigestion of food waste (FW) and three different lignocellulosic wastes (LW) (Corn stover (CS), Prairie cordgrass (PCG), and Unbleached paper (UBP)) for thermophilic anaerobic digestion to overcome the limitations of digesting food waste alone (volatile fatty acids accumulation and low C:N ratio). Using an enriched thermophilic methanogenic consortium, all the food and lignocellulosic waste mixtures showed positive synergistic effects of codigestion. After 30 days of incubation at 60 °C (100 rpm), the highest methane yield of 305.45 L·kg−1 volatile solids (VS) was achieved with a combination of FW-PCG-CS followed by 279.31 L·kg−1 VS with a mixture of FW-PCG. The corresponding volatile solids reduction for these two co-digestion mixtures was 68% and 58%, respectively. This study demonstrated a reduced hydraulic retention time for methane production using FW and LW. 
    more » « less