Food waste (FW), a major part of the US waste stream, causes greenhouse gases within landfills, but there is an opportunity to divert FW to anaerobic digestion (AD) facilities that produce biogas and digestate fertilizer. The composition of FW inputs to AD determines the value of these products. This study provides insight into the effect of waste composition on the quality of AD products by first characterizing the biogas and digestate quality of anaerobically digested FW from four diets (paleolithic, ketogenic, vegetarian, and omnivorous), and then estimating the difference in biogas produced from codigested FW and brewery waste (BW). Waste feedstock mixtures were incubated in lab-scale bioreactors for 21 days with live inoculum. Biogas quality was monitored for 21–30 days in four trials. Samples were analyzed using a gas chromatograph for detection of methane (CH4) and carbon dioxide (CO2). The composition of the waste inputs had a significant impact on the quality of biogas but not on the quality of the digestate, which has implications for the value of post-AD fertilizer products. Wastes with higher proportions of proteins and fats enhanced biogas quality, unlike wastes that were rich in soluble carbohydrates. Codigestion of omnivorous food waste with carbon-rich agricultural wastes (AW) improved biogas quality, but biogas produced from BW does not necessarily improve with increasing amounts of AW in codigestion.
more »
« less
Anaerobic Digestion of Food Waste, Brewery Waste, and Agricultural Residues in an Off-Grid Continuous Reactor
Small-scale anaerobic digestion (AD) can be an effective organic waste management system that also provides energy for small businesses and rural communities. This study measured fuel production from digestions of single and mixed feedstocks using an unheated, 2 m3 digester operated continuously in a temperate climate for over three years. Using local food waste, brewery waste, grease waste, and agricultural residues, this study determined that small-scale AD co-digestions were almost always higher yielding than single feedstocks during psychrophilic operation and seasonal temperature transitions. Agricultural residues from Miscanthus x giganteus had the greatest impact on biomethane production during co-digestion (4.7-fold greater average biogas %CH4), while mesophilic digestion of brewery waste alone produced the most biogas (0.76 gCH4 gVS−1 d−1). Biogas production during the transition from mesophilic to psychrophilic was temporarily maintained at levels similar to mesophilic digestions, particularly during co-digestions, but biogas quality declined during these temperature shifts. Full-time operation of small-scale, unheated AD systems could be feasible in temperate climates if feedstock is intentionally amended to stabilize carbon content.
more »
« less
- Award ID(s):
- 2123495
- PAR ID:
- 10302951
- Date Published:
- Journal Name:
- Sustainability
- Volume:
- 13
- Issue:
- 12
- ISSN:
- 2071-1050
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study examines biodegradability (BD) and optimum conditions for the solid-state anaerobic digestion (SS-AD) of organic solid poultry waste (organs, intestines, offal, and unprocessed meat) to maximize biomethane production. Three main parameters, substrate-to-inoculum (S/I) ratio, pH, and temperature, were evaluated for the SS-AD of organic solid poultry waste. pH was evaluated at non-adjusted pH, initially adjusted pH, and controlled pH conditions at a constant S/I ratio of 0.5 and temperature of 35 ± 1 °C. The S/I ratios were examined at (0.3, 0.5, 1, and 2) at a controlled pH of ≈7.9 and temperature of 35 ± 1 °C. The temperature was assessed at mesophilic (35 ± 1 °C) and thermophilic (55 ± 1 °C) conditions with a constant S/I ratio of 0.5 and controlled pH of ≈7.9. The results demonstrate that the highest biomethane production and BD were achieved with a controlled pH of ≈7.9 (689 ± 10 mg/L, 97.5 ± 1.4%). The initially adjusted pH (688 ± 14 mg/L, 97.3 ± 1.9%) and an S/I ratio of 0.3 (685 ± 8 mg/L, 96.8 ± 1.2%) had approximately equivalent outcomes. The thermophilic conditions yielded 78% lower biomethane yield than mesophilic conditions. The challenge of lower biomethane yield under thermophilic conditions will be resolved in future studies by determining the rate-limiting step. These observations highlight that SS-AD is a promising technology for biomethane production from solid organic poultry waste.more » « less
-
Interest in craft beers is increasing worldwide due to their flavor and variety. However, craft breweries have high water, energy, and carbon dioxide (CO2) demands and generate large quantities of high-strength waste and greenhouse gases. While many large breweries recover energy using anaerobic digestion (AD) and recapture CO2 from beer fermentation, little is known about the economic feasibility of applying these technologies at the scale of small craft breweries. In addition, compounds in hops (Humulus lupulus), which are commonly added to craft beer to provide a bitter or “hoppy” flavor, have been shown to adversely affect anaerobic microbes in ruminant studies. In this study, biochemical methane potential (BMP) assays and anaerobic sequencing batch reactor (ASBR) studies were used to investigate biomethane production from high-strength craft brewery waste, with and without hop addition. A spreadsheet tool was developed to evaluate the economic feasibility of bioenergy and CO2 recovery depending on the brewery’s location, production volume, waste management, CO2 requirement, energy costs, and hop waste addition. The results showed that co-digestion of yeast waste with 20% hops (based on chemical oxygen demand (COD)) resulted in slightly lower methane yields compared with mono-digestion of yeast; however, it did not significantly impact the economic feasibility of AD in craft breweries. The use of AD and CO2 recovery was found to be economically feasible if the brewery’s annual beer production is >50,000 barrels/year.more » « less
-
null (Ed.)The improper management of goat manure from concentrated goat feeding operations and food waste leads to the emission of greenhouse gasses and water pollution in the US. The wastes were collected from the International Goat Research Center and a dining facility at Prairie View A&M University. The biochemical methane potential of these two substrates in mono and co-digestion at varied proportions was determined in triplicates and processes were evaluated using two nonlinear regression models. The experiments were conducted at 36 ± 1 °C with an inoculum to substrate ratio of 2.0. The biomethane was measured by water displacement method (pH 10:30), absorbing carbon dioxide. The cumulative yields in goat manure and food waste mono-digestions were 169.7 and 206.0 mL/gVS, respectively. Among co-digestion, 60% goat manure achieved the highest biomethane yields of 380.5 mL/gVS. The biodegradabilities of 33.5 and 65.7% were observed in goat manure and food waste mono-digestions, while 97.4% were observed in the co-digestion having 60% goat manure. The modified Gompertz model is an excellent fit in simulating the anaerobic digestion of food waste and goat manure substrates. These findings provide useful insights into the co-digestion of these substrates.more » « less
-
Jatropha curcas seeds, as an abundant lignocellulosic biomass, offer a highly promising and ideal alternative for producing energy in the form of methane. Use of J. curcas seeds has the potential to significantly bolster the biofuel sector, fostering a more sustainable circular economy. In the current study, different fractions of processed J. curcas seeds were investigated for biogas production. J. curcas seed pressed cake, a by-product of biodiesel production, was subjected to methanolic extraction. The remaining solids, referred to as methanolic residues, yielded more biogas in batch experiments than pressed cake and residues from aqueous and n-hexane extractions. The compounds extracted with methanol inhibited hydrolysis and reduced biogas production by 35.5% compared to the same setup without extracts. In continuous reactors fed with methanolic residues, the highest biogas yield occurred at an organic loading rate (OLR) of 1 g VS L−1 day−1 and a hydraulic retention time (HRT) of 20 days. The relative abundance of acetogenic bacteria was higher in reactors fed with methanolic residues than in those fed with seed pressed cake, seed oil, and whole seed. Jatropha seed oil and whole seed did not inhibit methanogens. A higher relative abundance of methanogenic communities was observed in all reactors at HRT of 20 days compared to those at HRTs at 15 and 10 days. These findings can be used to increase biogas production during anaerobic digestion of J. curcas seed components and suggests a zero-waste biorefinery production route for value added compounds derived from the removal of biogas-inhibiting components.more » « less
An official website of the United States government

